A platform for research: civil engineering, architecture and urbanism
Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation
Lightweight construction material, notably foamed concrete, had become more favourable to reduce building weight and cost, accelerate construction process, and ease handling of precast segment. Simultaneously, rapid development had result in price rising of conventional material and environmental issue due to abundant wastes, for instance steel slag. As a consequence, feasibility of steel slag to be incorporated in lightweight foamed concrete for both structural and nonstructural purpose is worth to be investigated. This paper is aimed to evaluate the effects of crushed steel slag, as partial replacement of sand with specific gradation, on performance of lightweight foamed concrete (LFC) with density of 1600 kg/m3 to 1700 kg/m3 in terms of compressive and tensile strengths. Different steel slag based LFCs were developed by replacing 0, 25, 50, 75 and 100% of steel slag for sand. Different water to cement ratios (w/c) and dosages of super-plasticizer (sp) were adopted to confirm certain workability, strength properties was then studied for ages of 7 and 28 days. The laboratory results showed that lightweight foamed concrete with incorporation of crushed steel slag has decreased strength; however it still achieves structural strength of 17 MPa when replacement level is less than 25% at density of 1600 kg/m3 to 1700 kg/m3.
Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation
Lightweight construction material, notably foamed concrete, had become more favourable to reduce building weight and cost, accelerate construction process, and ease handling of precast segment. Simultaneously, rapid development had result in price rising of conventional material and environmental issue due to abundant wastes, for instance steel slag. As a consequence, feasibility of steel slag to be incorporated in lightweight foamed concrete for both structural and nonstructural purpose is worth to be investigated. This paper is aimed to evaluate the effects of crushed steel slag, as partial replacement of sand with specific gradation, on performance of lightweight foamed concrete (LFC) with density of 1600 kg/m3 to 1700 kg/m3 in terms of compressive and tensile strengths. Different steel slag based LFCs were developed by replacing 0, 25, 50, 75 and 100% of steel slag for sand. Different water to cement ratios (w/c) and dosages of super-plasticizer (sp) were adopted to confirm certain workability, strength properties was then studied for ages of 7 and 28 days. The laboratory results showed that lightweight foamed concrete with incorporation of crushed steel slag has decreased strength; however it still achieves structural strength of 17 MPa when replacement level is less than 25% at density of 1600 kg/m3 to 1700 kg/m3.
Strength Properties of Foamed Concrete Containing Crushed Steel Slag as Partial Replacement of Sand with Specific Gradation
Tiong Hock Yong (author) / Lim Siong Kang (author) / Lim Jee Hock (author)
2017
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2022
|Crushed Post-Consumer Glass as Partial Replacement of Sand in Concrete
British Library Conference Proceedings | 2001
|The effect of variations in gradation of crushed stone on concrete strength
Engineering Index Backfile | 1929
|