A platform for research: civil engineering, architecture and urbanism
The Evaluation of Regional Water-Saving Irrigation Development Level in Humid Regions of Southern China
Water-saving irrigation development level (WIDL) refers to reasonably and accurately judging a water-saving area based on the analysis of all factors affecting the water-saving irrigation development. The evaluation of regional WIDL is the premise of scientific planning guidance to irrigation work. How to select reasonable evaluation indexes and build a scientific and comprehensive model to evaluate WIDL is of great significance. In this study, the comprehensive evaluation index system of WIDL in 21 cities (states) of the Sichuan province in China (a typical humid region in southern China) was constructed, and the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method was improved to evaluate WIDL. Results showed that the overall development level of water-saving irrigation was “poor” in Sichuan province. The water-saving irrigation level turned out to be “good” in three regions with advantageous geographical conditions and developed economies, “general” in four regions with good economic levels where agronomy water saving has been popularized, and “poor” in fourteen regions of mountainous and hilly areas, especially Ganzi, Aba, and Liangshan, located in the Northwest plateau of Sichuan province, with poor natural resources and insufficient economies. The evaluation results were in good agreement with the actual situation, and in this area, there is enormous potential for the development of water-saving irrigation strategies. This study provides an important technical approach for the evaluation of water-saving irrigation development in humid regions of Southern China.
The Evaluation of Regional Water-Saving Irrigation Development Level in Humid Regions of Southern China
Water-saving irrigation development level (WIDL) refers to reasonably and accurately judging a water-saving area based on the analysis of all factors affecting the water-saving irrigation development. The evaluation of regional WIDL is the premise of scientific planning guidance to irrigation work. How to select reasonable evaluation indexes and build a scientific and comprehensive model to evaluate WIDL is of great significance. In this study, the comprehensive evaluation index system of WIDL in 21 cities (states) of the Sichuan province in China (a typical humid region in southern China) was constructed, and the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method was improved to evaluate WIDL. Results showed that the overall development level of water-saving irrigation was “poor” in Sichuan province. The water-saving irrigation level turned out to be “good” in three regions with advantageous geographical conditions and developed economies, “general” in four regions with good economic levels where agronomy water saving has been popularized, and “poor” in fourteen regions of mountainous and hilly areas, especially Ganzi, Aba, and Liangshan, located in the Northwest plateau of Sichuan province, with poor natural resources and insufficient economies. The evaluation results were in good agreement with the actual situation, and in this area, there is enormous potential for the development of water-saving irrigation strategies. This study provides an important technical approach for the evaluation of water-saving irrigation development in humid regions of Southern China.
The Evaluation of Regional Water-Saving Irrigation Development Level in Humid Regions of Southern China
Lu Zhao (author) / Lili Zhang (author) / Ningbo Cui (author) / Chuan Liang (author) / Yi Feng (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Irrigation water rights in humid areas
Engineering Index Backfile | 1952
|Advances in water saving irrigation evaluation
British Library Online Contents | 2002
|Water Supply Versus Irrigation in Humid Areas
ASCE | 2021
|Irrigation Water Rights in the Humid Areas
ASCE | 2021
|Storage for irrigation water in humid areas
Engineering Index Backfile | 1959
|