A platform for research: civil engineering, architecture and urbanism
Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine
Urban forests are vitally important for sustainable urban development and the well-being of urban residents. However, there is, as yet, no country-level urban forest spatial dataset of sufficient quality for the scientific management of, and correlative studies on, urban forests in China. At present, China attaches great importance to the construction of urban forests, and it is necessary to map a high-resolution and high-accuracy dataset of urban forests in China. The open-access Sentinel images and the Google Earth Engine platform provide a significant opportunity for the realization of this work. This study used eight bands (B2−B8, B11) and three indices of Sentinel-2 in 2016 to map the urban forests of China using the Random Forest machine learning algorithms at the pixel scale with the support of Google Earth Engine (GEE). The 7317 sample points for training and testing were collected from field visits and very high resolution images from Google Earth. The overall accuracy, producer’s accuracy of urban forest, and user’s accuracy of urban forest assessed by independent validation samples in this study were 92.30%, 92.27%, and 92.18%, respectively. In 2016, the percentage of urban forest cover was 19.2%. Nearly half of the cities had an urban forest cover between 10% and 20%, and the average percentage of large cities whose urban populations were over 5 million was 24.8%. Cities with less than half of the average were mainly distributed in northern and western parts of China, which should be focused on in urban greening planning.
Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine
Urban forests are vitally important for sustainable urban development and the well-being of urban residents. However, there is, as yet, no country-level urban forest spatial dataset of sufficient quality for the scientific management of, and correlative studies on, urban forests in China. At present, China attaches great importance to the construction of urban forests, and it is necessary to map a high-resolution and high-accuracy dataset of urban forests in China. The open-access Sentinel images and the Google Earth Engine platform provide a significant opportunity for the realization of this work. This study used eight bands (B2−B8, B11) and three indices of Sentinel-2 in 2016 to map the urban forests of China using the Random Forest machine learning algorithms at the pixel scale with the support of Google Earth Engine (GEE). The 7317 sample points for training and testing were collected from field visits and very high resolution images from Google Earth. The overall accuracy, producer’s accuracy of urban forest, and user’s accuracy of urban forest assessed by independent validation samples in this study were 92.30%, 92.27%, and 92.18%, respectively. In 2016, the percentage of urban forest cover was 19.2%. Nearly half of the cities had an urban forest cover between 10% and 20%, and the average percentage of large cities whose urban populations were over 5 million was 24.8%. Cities with less than half of the average were mainly distributed in northern and western parts of China, which should be focused on in urban greening planning.
Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine
Qianwen Duan (author) / Minghong Tan (author) / Yuxuan Guo (author) / Xue Wang (author) / Liangjie Xin (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Google Earth Engine Advancing Urban Land Change Science
Wiley | 2021
|Estimating urban vegetation cover fraction using Google Earth® images
Taylor & Francis Verlag | 2012
|Annual Change Analysis of Mangrove Forests in China during 1986–2021 Based on Google Earth Engine
DOAJ | 2022
|Detecting Harvest Events in Plantation Forest Using Sentinel-1 and -2 Data via Google Earth Engine
DOAJ | 2020
|