A platform for research: civil engineering, architecture and urbanism
Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields
In the process of rice cultivation, fertilizer reduction can effectively reduce the concentration of phosphorus (P) in overlying water and leaching water. In this study, the variation characteristics of P in overlying and leaching water under the conditions of fertilizer reduction and straw application and its impact on the environment were studied through a two-season rice field experiment. Four treatments were set, including no fertilizer without straw (CK), conventional fertilization (CF), 20% reduction in nitrogen (N) and P fertilization (RF), and 20% reduction in N and P fertilization with the wheat straw (RFWS). The results showed that RF could effectively reduce the risk of P loss due to its ability to decrease the concentration of P in overlying and leaching water. RFWS increased P concentrations in overlying and leaching water of rice fields. Total dissolved phosphorus (TDP) was the main form of total phosphorus (TP), and soluble reactive phosphorus (SRP) was the main form of TDP. The concentration of TP, TDP, and SRP in the overlying and leaching water peaked on the first day after fertilization, and then gradually decreased. The high-risk period of P loss was 0 to 10 days after fertilization. This study could provide appropriate strategies to reduce the risk of P loss during local rice cultivation and protect local water resources from eutrophication.
Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields
In the process of rice cultivation, fertilizer reduction can effectively reduce the concentration of phosphorus (P) in overlying water and leaching water. In this study, the variation characteristics of P in overlying and leaching water under the conditions of fertilizer reduction and straw application and its impact on the environment were studied through a two-season rice field experiment. Four treatments were set, including no fertilizer without straw (CK), conventional fertilization (CF), 20% reduction in nitrogen (N) and P fertilization (RF), and 20% reduction in N and P fertilization with the wheat straw (RFWS). The results showed that RF could effectively reduce the risk of P loss due to its ability to decrease the concentration of P in overlying and leaching water. RFWS increased P concentrations in overlying and leaching water of rice fields. Total dissolved phosphorus (TDP) was the main form of total phosphorus (TP), and soluble reactive phosphorus (SRP) was the main form of TDP. The concentration of TP, TDP, and SRP in the overlying and leaching water peaked on the first day after fertilization, and then gradually decreased. The high-risk period of P loss was 0 to 10 days after fertilization. This study could provide appropriate strategies to reduce the risk of P loss during local rice cultivation and protect local water resources from eutrophication.
Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields
Wei Zhou (author) / Yajun Yang (author) / Xiaoqi Liu (author) / Ziying Cui (author) / Jialong Lv (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
European Patent Office | 2015
|British Library Online Contents | 2011
|