A platform for research: civil engineering, architecture and urbanism
The Effect of Veneer Densification Temperature and Wood Species on the Plywood Properties Made from Alternate Layers of Densified and Non-Densified Veneers
In this study the properties of plywood manufactured from densified and non-densified veneer sheets and alternate layers of such veneers with and without densification using low amount of adhesive as a function of densification temperature and wood species were investigated. The plywood panels were made from rotary-cut birch and black alder veneers using urea-formaldehyde (UF) adhesive. Veneer sheets with thickness of 1.5 mm were subjected to the thermal-compression at three different temperatures while keeping constant the pressure during a same time span. Five-layers plywood panels were produced using a constant hot-pressing schedule using different amounts of glue spread as a function of the plywood type; such as plywood made from non-densified (80 g/m2) and densified (60 g/m2) veneers only; and combination of them (70 g/m2). The bending strength (MOR) and the modulus of elasticity (MOE) along with the shear strength of the plywood samples for bonding class 1 (dry conditions) have been determined. As expected bending strength of the plywood samples increased with the increasing in density. The increase of veneer densification temperature resulted in a gradually decrease of MOR; MOE and shear strength values for the plywood panels made of densified veneers and mixed panels of both species. The temperature of 150 °C for veneer densification seemed to be enough to achieve enhanced bending and bonding properties. All plywood panels in this study were manufactured using reduced glue consumption and they presented satisfactory properties performance for indoor applications.
The Effect of Veneer Densification Temperature and Wood Species on the Plywood Properties Made from Alternate Layers of Densified and Non-Densified Veneers
In this study the properties of plywood manufactured from densified and non-densified veneer sheets and alternate layers of such veneers with and without densification using low amount of adhesive as a function of densification temperature and wood species were investigated. The plywood panels were made from rotary-cut birch and black alder veneers using urea-formaldehyde (UF) adhesive. Veneer sheets with thickness of 1.5 mm were subjected to the thermal-compression at three different temperatures while keeping constant the pressure during a same time span. Five-layers plywood panels were produced using a constant hot-pressing schedule using different amounts of glue spread as a function of the plywood type; such as plywood made from non-densified (80 g/m2) and densified (60 g/m2) veneers only; and combination of them (70 g/m2). The bending strength (MOR) and the modulus of elasticity (MOE) along with the shear strength of the plywood samples for bonding class 1 (dry conditions) have been determined. As expected bending strength of the plywood samples increased with the increasing in density. The increase of veneer densification temperature resulted in a gradually decrease of MOR; MOE and shear strength values for the plywood panels made of densified veneers and mixed panels of both species. The temperature of 150 °C for veneer densification seemed to be enough to achieve enhanced bending and bonding properties. All plywood panels in this study were manufactured using reduced glue consumption and they presented satisfactory properties performance for indoor applications.
The Effect of Veneer Densification Temperature and Wood Species on the Plywood Properties Made from Alternate Layers of Densified and Non-Densified Veneers
Emilia-Adela Salca (author) / Pavlo Bekhta (author) / Yaroslav Seblii (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2023
|Properties of Densified Veneer
British Library Conference Proceedings | 1994
|Development of Beam to Beam Connectors Made of Densified Veneer Wood
DataCite | 2021
|