A platform for research: civil engineering, architecture and urbanism
Experimental Research on the Properties and Formulation of Fly Ash Based Geopolymer Grouting Material
This paper experimentally investigated the effects of varying contents of Na2O in a modified sodium silicate, sodium silicate moduli (Ms), and contents of granulated blast furnace slag (GBFS) on the compressive strength and drying shrinkage of fly ash (FA)-based geopolymer grouting materials at different ages. X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS) were used to study the influences of different amounts of GBFS on the microstructure and product compositions of FA-based geopolymer grouting materials. The results show that the content of Na2O in modified sodium silicate, Ms, and the content of GBFS play a significant role in compressive strength and drying shrinkage of FA-based geopolymer grouting materials. In addition, the influence of Ms as well as the content of GBFS on the compressive strength and drying shrinkage of FA-based geopolymer grouting materials was deeply affected by curing age. The micro-performance tests and analysis clearly showed that incorporating 30 wt% GBFS can decrease the proportion of pores with large pore sizes, improve pore size distribution, and enhance the solubility of FA and further promote the formation of C-A-S-H gel within FA-based geopolymer grouting materials.
Experimental Research on the Properties and Formulation of Fly Ash Based Geopolymer Grouting Material
This paper experimentally investigated the effects of varying contents of Na2O in a modified sodium silicate, sodium silicate moduli (Ms), and contents of granulated blast furnace slag (GBFS) on the compressive strength and drying shrinkage of fly ash (FA)-based geopolymer grouting materials at different ages. X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS) were used to study the influences of different amounts of GBFS on the microstructure and product compositions of FA-based geopolymer grouting materials. The results show that the content of Na2O in modified sodium silicate, Ms, and the content of GBFS play a significant role in compressive strength and drying shrinkage of FA-based geopolymer grouting materials. In addition, the influence of Ms as well as the content of GBFS on the compressive strength and drying shrinkage of FA-based geopolymer grouting materials was deeply affected by curing age. The micro-performance tests and analysis clearly showed that incorporating 30 wt% GBFS can decrease the proportion of pores with large pore sizes, improve pore size distribution, and enhance the solubility of FA and further promote the formation of C-A-S-H gel within FA-based geopolymer grouting materials.
Experimental Research on the Properties and Formulation of Fly Ash Based Geopolymer Grouting Material
Qingwei Zeng (author) / Peiwei Gao (author) / Kuan Li (author) / Guoqing Dong (author) / Guanglai Jin (author) / Xuewei Sun (author) / Jingwei Zhao (author) / Lifeng Chen (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modified geopolymer grouting material and grouting equipment thereof
European Patent Office | 2024
|European Patent Office | 2024
|European Patent Office | 2022
|