A platform for research: civil engineering, architecture and urbanism
Novel intelligent adaptive sliding mode control for marine fuel cell system via hybrid algorithm
The transition towards renewable energy in the marine sector has garnered increasing international focus, with PEMFC (Proton Exchange Membrane Fuel Cell) emerging as a viable low-carbon solution for maritime vessels. This technology is not only limited to small vessels, but also is applicable to the auxiliary power systems of larger ships. In this paper, a hybrid control scheme based on optimization algorithms and observer are presented. This strategy is designed to enhance the safety and efficiency of stack's operation during navigation. Within the control system, a sliding mode observer monitors system perturbations, ensuring optimal controller performance. The control strategy employs a non-singular fast terminal sliding surface for the controller, integrating a fuzzy logic and particle swarm optimization to tune the sliding mode gain and dynamically regulate output, thereby enhancing system efficiency and minimizing energy consumption. Results indicate that the newly developed control methodology significantly boosts both the efficiency and dependability of marine PEMFC stack.
Novel intelligent adaptive sliding mode control for marine fuel cell system via hybrid algorithm
The transition towards renewable energy in the marine sector has garnered increasing international focus, with PEMFC (Proton Exchange Membrane Fuel Cell) emerging as a viable low-carbon solution for maritime vessels. This technology is not only limited to small vessels, but also is applicable to the auxiliary power systems of larger ships. In this paper, a hybrid control scheme based on optimization algorithms and observer are presented. This strategy is designed to enhance the safety and efficiency of stack's operation during navigation. Within the control system, a sliding mode observer monitors system perturbations, ensuring optimal controller performance. The control strategy employs a non-singular fast terminal sliding surface for the controller, integrating a fuzzy logic and particle swarm optimization to tune the sliding mode gain and dynamically regulate output, thereby enhancing system efficiency and minimizing energy consumption. Results indicate that the newly developed control methodology significantly boosts both the efficiency and dependability of marine PEMFC stack.
Novel intelligent adaptive sliding mode control for marine fuel cell system via hybrid algorithm
Shiyi Fang (author) / Daifen Chen (author) / Xinyu Fan (author)
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
An adaptive sliding mode control system and its application to real‐time hybrid simulation
Wiley | 2022
|