A platform for research: civil engineering, architecture and urbanism
Static Balancing of Robot Mechanisms and Manipulation Devices
The paper deals with static balancing of various kinds of mechanisms and manipulation devices using spring balancing mechanisms. In case of parallelogram robots and manipulation mechanisms a spring balancing mechanism exerting a constant force is used. Problems of static balancing of variable payloads are also presented and investigated in the paper. Static balancing is formulated as an optimization problem with the objective function expressing minimization of the forces acting in the driving joints. As design variables geometrical variables and spring stiffnesses and their unloaded lengths are used. Optimization Toolbox for Use with Matlab and GOOD (Generator Of Optimal Designs) are used to solve the static balancing problems. The optimized mechanisms are evaluated by using multibody dynamics programs taking into account friction effects in mechanism joints. The results of static balancing optimization show essential reduction of the gravity load in drive joints and consequently driving forces with important energy savings.
Static Balancing of Robot Mechanisms and Manipulation Devices
The paper deals with static balancing of various kinds of mechanisms and manipulation devices using spring balancing mechanisms. In case of parallelogram robots and manipulation mechanisms a spring balancing mechanism exerting a constant force is used. Problems of static balancing of variable payloads are also presented and investigated in the paper. Static balancing is formulated as an optimization problem with the objective function expressing minimization of the forces acting in the driving joints. As design variables geometrical variables and spring stiffnesses and their unloaded lengths are used. Optimization Toolbox for Use with Matlab and GOOD (Generator Of Optimal Designs) are used to solve the static balancing problems. The optimized mechanisms are evaluated by using multibody dynamics programs taking into account friction effects in mechanism joints. The results of static balancing optimization show essential reduction of the gravity load in drive joints and consequently driving forces with important energy savings.
Static Balancing of Robot Mechanisms and Manipulation Devices
Segla Stefan (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
A New Medical Parallel Robot and Its Static Balancing Optimization
British Library Online Contents | 2007
|Manipulation Mechanisms for Micro-Assembly Technology
British Library Online Contents | 2005
|