A platform for research: civil engineering, architecture and urbanism
Buckling analysis of a cable-stayed circular frame
AbstractLarge parabolic dish concentrators have been widely employed in solar thermal applications. The supporting structure of a solar dish concentrator consists of a circular frame, a central post, and front and rear cables connecting the frame to the post. The tensions in the cables cause compressive stresses in the circular frame and the central post, and this support structure must be designed for stability. In this paper, the nonlinear buckling behavior of the supporting structure of a cable-stayed circular frame is studied in detail. A three-dimensional finite element model of the supporting structure is developed to predict the critical cable tensions that would cause buckling of the circular frame and to determine the associated buckling mode shapes of the supporting structural system. The results show that the buckling load of a cable-stayed circular frame depends not only upon the cross-section of the frame, but also upon the number of cables and the inclinations of the cables. In all cases, in-plane buckling modes are predominant. The concentrated torques resulting from unbalanced cable tensions tend to induce the out-of-plane buckling modes.
Buckling analysis of a cable-stayed circular frame
AbstractLarge parabolic dish concentrators have been widely employed in solar thermal applications. The supporting structure of a solar dish concentrator consists of a circular frame, a central post, and front and rear cables connecting the frame to the post. The tensions in the cables cause compressive stresses in the circular frame and the central post, and this support structure must be designed for stability. In this paper, the nonlinear buckling behavior of the supporting structure of a cable-stayed circular frame is studied in detail. A three-dimensional finite element model of the supporting structure is developed to predict the critical cable tensions that would cause buckling of the circular frame and to determine the associated buckling mode shapes of the supporting structural system. The results show that the buckling load of a cable-stayed circular frame depends not only upon the cross-section of the frame, but also upon the number of cables and the inclinations of the cables. In all cases, in-plane buckling modes are predominant. The concentrated torques resulting from unbalanced cable tensions tend to induce the out-of-plane buckling modes.
Buckling analysis of a cable-stayed circular frame
Tuan, Alexander Y. (author) / Tuan, Christopher Y. (author) / Li, Q.S. (author)
Journal of Constructional Steel Research ; 66 ; 420-427
2009-10-17
8 pages
Article (Journal)
Electronic Resource
English
Buckling analysis of a cable-stayed circular frame
Online Contents | 2010
|Arch rib cable-stayed buckling and hanging connector and cable-stayed buckling and hanging structure
European Patent Office | 2022
|Iterative buckling analysis for steel cable-stayed bridges
British Library Conference Proceedings | 2010
|Simplified assessment of cable-stayed bridges buckling stability
Elsevier | 2016
|European Patent Office | 2023
|