A platform for research: civil engineering, architecture and urbanism
Preparation method of 3D printing zirconium dioxide powder moulding material
The invention discloses a preparation method of a 3D printing zirconium dioxide powder moulding material. The preparation method of the 3D printing zirconium dioxide powder moulding material is characterized by comprising the following steps: carrying out pre-treatment on zirconium dioxide powder in an ethanol solvent by adopting allyl trimethoxy silicane, so that pretreated zirconium dioxide powder is obtained; then adding 60-72% by mass of petroleum ether and 3-8% by mass of polyethylene into a reactor, heating, stirring, dissolving, and then adding 20-30% by mass of pretreated zirconium dioxide powder and 1-4% by mass of azodiisobutyronitrile, wherein the sum of the percents by mass of all the components is one hundred percent; heating while stirring until the temperature is increased to 80+/-5 DEG C, carrying out constant temperature refluxing reaction for 6-8 hours, cooling to room temperature, and then carrying out spray drying, so that the 3D printing zirconium dioxide powder moulding material is obtained. The 3D printing zirconium dioxide powder moulding material can be directly moulded without spraying a binding agent in a range that the temperature is increased to 125-137 DEG C by heating and has the advantages that a preparation technology is simple, conditions are easy to control, production cost is low, and industrial production can be easily realized.
Preparation method of 3D printing zirconium dioxide powder moulding material
The invention discloses a preparation method of a 3D printing zirconium dioxide powder moulding material. The preparation method of the 3D printing zirconium dioxide powder moulding material is characterized by comprising the following steps: carrying out pre-treatment on zirconium dioxide powder in an ethanol solvent by adopting allyl trimethoxy silicane, so that pretreated zirconium dioxide powder is obtained; then adding 60-72% by mass of petroleum ether and 3-8% by mass of polyethylene into a reactor, heating, stirring, dissolving, and then adding 20-30% by mass of pretreated zirconium dioxide powder and 1-4% by mass of azodiisobutyronitrile, wherein the sum of the percents by mass of all the components is one hundred percent; heating while stirring until the temperature is increased to 80+/-5 DEG C, carrying out constant temperature refluxing reaction for 6-8 hours, cooling to room temperature, and then carrying out spray drying, so that the 3D printing zirconium dioxide powder moulding material is obtained. The 3D printing zirconium dioxide powder moulding material can be directly moulded without spraying a binding agent in a range that the temperature is increased to 125-137 DEG C by heating and has the advantages that a preparation technology is simple, conditions are easy to control, production cost is low, and industrial production can be easily realized.
Preparation method of 3D printing zirconium dioxide powder moulding material
LI HUIZHI (author) / XU CHONGJUAN (author) / LI ZHIYING (author) / YANG CHUNXIA (author) / SUN DANZI (author)
2015-06-24
Patent
Electronic Resource
English
IPC:
C04B
Kalk
,
LIME
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
European Patent Office | 2015
|Preparation method of zirconium oxide 3D printing material
European Patent Office | 2023
|European Patent Office | 2015
|Preparation method and application of zirconium dioxide porous ceramic material
European Patent Office | 2020
|