A platform for research: civil engineering, architecture and urbanism
Method for preparing calcium silicate/magnesium oxide porous biological bone scaffold based on in-situ method
The invention discloses a method for preparing a calcium silicate/magnesium oxide porous biological bone scaffold based on an in-situ method, and belongs to the technical field of biomedical materials. The method comprises the steps: preparing mixed powder of metal oxide and calcium silicate ceramic through an in-situ method and preparing a ceramic scaffold through DLP forming technology and a high-temperature degreasing sintering method; and then, uniformly coating the surface of the ceramic scaffold with a layer of metal-containing slurry, scanning the surface of the scaffold by using laser, and finally performing high-temperature sintering to obtain a finished product of the biological bone scaffold. The mixed powder prepared through the in-situ method andmagnesium hydroxide particles can be uniformly adhered to the surfaces of ceramic particles, so that a printed blank has numerous microporous structures after being sintered; and not only the metal slurry coating on the surface of the ceramic scaffold can play roles in enhancing the structure and reducing the degradation rate, but also the metal ions on the surface can generate an antibacterial effect, so that the scaffold can be applied to the field of bone tissue engineering, and can be used as a bone filler, a substitute or a scaffold for in-vitro cell culture.
本发明公开了一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,属于生物医学材料技术领域,采用原位法制得金属氧化物与硅酸钙陶瓷的混合粉末,利用DLP成型技术和高温脱脂烧结法制得陶瓷支架,然后在陶瓷支架表面均匀涂覆一层含有金属的浆料,使用激光扫描支架表面,最后经高温烧结后制得生物骨支架成品。利用原位法制得的混合粉体,氢氧化镁颗粒可以均匀的粘附在陶瓷颗粒表面,使得打印的坯体经过烧结后出现众多微孔结构,而陶瓷支架表面的金属浆料涂层,不仅可以起到增强结构、降低降解速率的作用,而且表面的金属离子能够产生抗菌效果,能够应用于骨组织工程领域,作为骨填充物、置换物或者作为体外培养细胞的支架。
Method for preparing calcium silicate/magnesium oxide porous biological bone scaffold based on in-situ method
The invention discloses a method for preparing a calcium silicate/magnesium oxide porous biological bone scaffold based on an in-situ method, and belongs to the technical field of biomedical materials. The method comprises the steps: preparing mixed powder of metal oxide and calcium silicate ceramic through an in-situ method and preparing a ceramic scaffold through DLP forming technology and a high-temperature degreasing sintering method; and then, uniformly coating the surface of the ceramic scaffold with a layer of metal-containing slurry, scanning the surface of the scaffold by using laser, and finally performing high-temperature sintering to obtain a finished product of the biological bone scaffold. The mixed powder prepared through the in-situ method andmagnesium hydroxide particles can be uniformly adhered to the surfaces of ceramic particles, so that a printed blank has numerous microporous structures after being sintered; and not only the metal slurry coating on the surface of the ceramic scaffold can play roles in enhancing the structure and reducing the degradation rate, but also the metal ions on the surface can generate an antibacterial effect, so that the scaffold can be applied to the field of bone tissue engineering, and can be used as a bone filler, a substitute or a scaffold for in-vitro cell culture.
本发明公开了一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,属于生物医学材料技术领域,采用原位法制得金属氧化物与硅酸钙陶瓷的混合粉末,利用DLP成型技术和高温脱脂烧结法制得陶瓷支架,然后在陶瓷支架表面均匀涂覆一层含有金属的浆料,使用激光扫描支架表面,最后经高温烧结后制得生物骨支架成品。利用原位法制得的混合粉体,氢氧化镁颗粒可以均匀的粘附在陶瓷颗粒表面,使得打印的坯体经过烧结后出现众多微孔结构,而陶瓷支架表面的金属浆料涂层,不仅可以起到增强结构、降低降解速率的作用,而且表面的金属离子能够产生抗菌效果,能够应用于骨组织工程领域,作为骨填充物、置换物或者作为体外培养细胞的支架。
Method for preparing calcium silicate/magnesium oxide porous biological bone scaffold based on in-situ method
一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法
SHEN LIDA (author) / ZHANG HANXU (author) / JIAO CHEN (author) / HE ZHIJING (author) / LIANG HUIXIN (author) / QIU MINGBO (author) / CHEN ZHIPENG (author)
2021-07-02
Patent
Electronic Resource
Chinese
IPC:
C04B
Kalk
,
LIME
/
A61L
Verfahren oder Vorrichtungen zum Sterilisieren von Stoffen oder Gegenständen allgemein
,
METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
European Patent Office | 2022
|Preparation method of medical resilient calcium silicate porous ceramic scaffold
European Patent Office | 2024
|PREPARING METHOD OF POROUS CERAMIC MADE OF MAGNESIUM SILICATE
European Patent Office | 2023
|Method for modifying calcium silicate biological ceramic through magnesium
European Patent Office | 2021
|European Patent Office | 2021
|