A platform for research: civil engineering, architecture and urbanism
DAMAGE LOCATION PREDICTION DEVICE, DAMAGE LOCATION PREDICTION METHOD, DAMAGE LOCATION PREDICTION PROGRAM, AND GENERATION METHOD OF LEARNED MODEL
To enable prediction of locations where pavement damage is likely to occur.SOLUTION: A prediction device 10 includes an acquisition unit 101 that acquires input data based on data of reflected waves of microwaves emitted toward a paved road while traveling on the road, a prediction unit 102 that mechanically learns, as teacher data, location information that indicates characteristics that may cause damage in the input data and the road and predicts locations where damage is likely to occur on the road from the input data by using a learned model that outputs locations where damage may occur on the road when the input data is input, and a presentation unit 103 that presents the prediction result of the prediction unit 102.SELECTED DRAWING: Figure 5
【課題】舗装の損傷が発生しそうな箇所を予測することを可能とする。【解決手段】舗装された道路を走行しながら前記道路に向けて照射されたマイクロ波の反射波のデータに基づいた入力データを取得する取得部101と、前記入力データ及び前記道路において損傷が発生する可能性のある特徴を示す箇所の情報を教師データとして機械学習を行って、前記入力データを入力すると前記道路において損傷が発生する可能性が有る箇所を出力する学習済みモデルを用いて、前記入力データから前記道路において損傷が発生する可能性が有る箇所を予測する予測部102と、予測部102の予測の結果を提示する提示部103と、を備える、予測装置10が提供される。【選択図】図5
DAMAGE LOCATION PREDICTION DEVICE, DAMAGE LOCATION PREDICTION METHOD, DAMAGE LOCATION PREDICTION PROGRAM, AND GENERATION METHOD OF LEARNED MODEL
To enable prediction of locations where pavement damage is likely to occur.SOLUTION: A prediction device 10 includes an acquisition unit 101 that acquires input data based on data of reflected waves of microwaves emitted toward a paved road while traveling on the road, a prediction unit 102 that mechanically learns, as teacher data, location information that indicates characteristics that may cause damage in the input data and the road and predicts locations where damage is likely to occur on the road from the input data by using a learned model that outputs locations where damage may occur on the road when the input data is input, and a presentation unit 103 that presents the prediction result of the prediction unit 102.SELECTED DRAWING: Figure 5
【課題】舗装の損傷が発生しそうな箇所を予測することを可能とする。【解決手段】舗装された道路を走行しながら前記道路に向けて照射されたマイクロ波の反射波のデータに基づいた入力データを取得する取得部101と、前記入力データ及び前記道路において損傷が発生する可能性のある特徴を示す箇所の情報を教師データとして機械学習を行って、前記入力データを入力すると前記道路において損傷が発生する可能性が有る箇所を出力する学習済みモデルを用いて、前記入力データから前記道路において損傷が発生する可能性が有る箇所を予測する予測部102と、予測部102の予測の結果を提示する提示部103と、を備える、予測装置10が提供される。【選択図】図5
DAMAGE LOCATION PREDICTION DEVICE, DAMAGE LOCATION PREDICTION METHOD, DAMAGE LOCATION PREDICTION PROGRAM, AND GENERATION METHOD OF LEARNED MODEL
損傷箇所予測装置、損傷箇所予測方法、損傷箇所予測プログラム及び学習済みモデル生成方法
SEI FUMIO (author) / KUNO TAKENAO (author) / SATO FUMINORI (author) / MORITA HIDEAKI (author) / OZAWA YUKIO (author) / YAMANE HIROYUKI (author) / YAMASHITA MARIKO (author) / OTA MASAHIKO (author)
2024-01-09
Patent
Electronic Resource
Japanese
IPC:
E01C
Bau von Straßen, Sportplätzen oder dgl., Decken dafür
,
CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE
European Patent Office | 2023
|European Patent Office | 2022
|Bridge Damage Location Based on RBFN
British Library Conference Proceedings | 2007
|Robust Damage Location in Structures Using Taguchi Method
British Library Online Contents | 2005
|Damage location and assessment along structural elements using damage submatrices
Online Contents | 2009
|