A platform for research: civil engineering, architecture and urbanism
Method for selectively metallizing surface of ceramic substrate, ceramic product and use of ceramic product
A method for selectively metallizing a surface of a ceramic substrate, a ceramic product and use of the ceramic product are provided. The method comprises steps of: A) molding and sintering a ceramic composition to obtain the ceramic substrate, in which the ceramic composition comprises a ceramic powder and a functional powder dispersed in the ceramic powder; the ceramic powder is at least one selected from a group consisting of an oxide of E, a nitride of E, a oxynitride of E, and a carbide of E; E at least one selected from a group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Ga, Si, Ge, P, As, Sc, Y, Zr, Hf, is and lanthanide elements; the functional powder is at least one selected from a group consisting of an oxide of M, a nitride of M, a oxynitride of M, a carbide of M, and a simple substance of M; and M is at least one selected from a group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Au, In, Sn, Sb, Pb, Bi, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; B) radiating a predetermined region of the surface of the ceramic substrate using an energy beam to form a chemical plating active center on the predetermined region of the surface of the ceramic substrate; and C) performing chemical plating on the ceramic substrate formed with the chemical plating active center to form a metal layer on the predetermined region of the surface of the ceramic substrate.
Method for selectively metallizing surface of ceramic substrate, ceramic product and use of ceramic product
A method for selectively metallizing a surface of a ceramic substrate, a ceramic product and use of the ceramic product are provided. The method comprises steps of: A) molding and sintering a ceramic composition to obtain the ceramic substrate, in which the ceramic composition comprises a ceramic powder and a functional powder dispersed in the ceramic powder; the ceramic powder is at least one selected from a group consisting of an oxide of E, a nitride of E, a oxynitride of E, and a carbide of E; E at least one selected from a group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Ga, Si, Ge, P, As, Sc, Y, Zr, Hf, is and lanthanide elements; the functional powder is at least one selected from a group consisting of an oxide of M, a nitride of M, a oxynitride of M, a carbide of M, and a simple substance of M; and M is at least one selected from a group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Au, In, Sn, Sb, Pb, Bi, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; B) radiating a predetermined region of the surface of the ceramic substrate using an energy beam to form a chemical plating active center on the predetermined region of the surface of the ceramic substrate; and C) performing chemical plating on the ceramic substrate formed with the chemical plating active center to form a metal layer on the predetermined region of the surface of the ceramic substrate.
Method for selectively metallizing surface of ceramic substrate, ceramic product and use of ceramic product
GONG QING (author) / LIN XINPING (author) / REN YONGPENG (author) / ZHANG BAOXIANG (author)
2022-07-05
Patent
Electronic Resource
English
European Patent Office | 2019
|Method for selectively metallizing oxide ceramic composite material
European Patent Office | 2020
|Method for metallizing surface of ceramic dielectric substrate, and ceramic dielectric substrate
European Patent Office | 2021
|