A platform for research: civil engineering, architecture and urbanism
METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINEPHLOGOPITE
The invention relates to the preparation of synthetic melted mica materials, and specifically relates to a stone casting process and to the composition of an initial feedstock, and may be used in the creation of novel types of stone casting in the metallurgical, mining/enrichment, refractory and construction industries. A method for producing melt-cast potassium fluorine-phlogopite includes preparing feedstock by mixing mica-containing and fluorine-containing components, melting the produced feedstock, pouring the melt into a mold, allowing to sit, removing the casting from the mold, and cooling; according to the claimed invention, the mica-containing component consists of vermiculite (60-90 wt % and the fluorine-containing component consists of potassium cryolite 10-40 wt %, wherein, the feedstock is melted via the sequential stepped heating thereof, and the feedstock is prepared by layering components, wherein the top layer of the feedstock consists of a mixture of components, and the melt is poured into a preheated mold. The use of the present invention allows for enhancing the chemical purity of the potassium fluorine-phlogopite, increasing the corrosion and erosion resistance of the material, and improving the accuracy of the chemical composition of the yielded product.
METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINEPHLOGOPITE
The invention relates to the preparation of synthetic melted mica materials, and specifically relates to a stone casting process and to the composition of an initial feedstock, and may be used in the creation of novel types of stone casting in the metallurgical, mining/enrichment, refractory and construction industries. A method for producing melt-cast potassium fluorine-phlogopite includes preparing feedstock by mixing mica-containing and fluorine-containing components, melting the produced feedstock, pouring the melt into a mold, allowing to sit, removing the casting from the mold, and cooling; according to the claimed invention, the mica-containing component consists of vermiculite (60-90 wt % and the fluorine-containing component consists of potassium cryolite 10-40 wt %, wherein, the feedstock is melted via the sequential stepped heating thereof, and the feedstock is prepared by layering components, wherein the top layer of the feedstock consists of a mixture of components, and the melt is poured into a preheated mold. The use of the present invention allows for enhancing the chemical purity of the potassium fluorine-phlogopite, increasing the corrosion and erosion resistance of the material, and improving the accuracy of the chemical composition of the yielded product.
METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINEPHLOGOPITE
GUSEV ALEKSANDR OLEGOVICH (author) / SIMAKOV DMITRIY ALEKSANDROVICH (author) / SLUCHENKOV OLEG VALENTINOVICH (author)
2018-01-04
Patent
Electronic Resource
English
IPC:
C01F
COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
,
Verbindungen der Metalle Beryllium, Magnesium, Aluminium, Calcium, Strontium, Barium, Radium, Thorium oder der Seltenen Erden
/
C01B
NON-METALLIC ELEMENTS
,
Nichtmetallische Elemente
/
C01D
Verbindungen der Alkalimetalle, d.h. des Lithiums, Natriums, Kaliums, Rubidiums, Cäsiums oder Franciums
,
COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
/
C04B
Kalk
,
LIME
METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINEPHLOGOPITE
European Patent Office | 2016
|METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINE-PHLOGOPITE
European Patent Office | 2018
|METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINE-PHLOGOPITE
European Patent Office | 2016
|Method for producing melt-cast potassium fluorine-phlogopite
European Patent Office | 2017
|HIGH ALUMINA MELT-CAST REFRACTORY AND METHOD OF MANUFACTURING
European Patent Office | 2020
|