A platform for research: civil engineering, architecture and urbanism
OPTIMISING FIRE PROTECTION FOR AN OFFSHORE PLATFORM
An offshore oil and gas platform 14, 16 has equipment and piping associated with an oil and gas installation. A method for optimising fire protection for the platform 14, 16 comprises: arranging the platform 14, 16 to have an evacuation time of at most 15 minutes or less using one or more evacuation route(s) via a gangway or bridge 136 allowing personnel to escape to a vessel or to another platform 14, 16; determining a maximum evacuation time for the platform 14, 16; assessing the risk to personnel using the evacuation route(s) in accordance with the determined maximum evacuation time in the event of a fire; and providing passive fire protection to equipment and/or piping on the platform 14, 16 in order to prevent escalation of the fire that would create a risk to personnel on the evacuation route(s) during the determined evacuation time.
OPTIMISING FIRE PROTECTION FOR AN OFFSHORE PLATFORM
An offshore oil and gas platform 14, 16 has equipment and piping associated with an oil and gas installation. A method for optimising fire protection for the platform 14, 16 comprises: arranging the platform 14, 16 to have an evacuation time of at most 15 minutes or less using one or more evacuation route(s) via a gangway or bridge 136 allowing personnel to escape to a vessel or to another platform 14, 16; determining a maximum evacuation time for the platform 14, 16; assessing the risk to personnel using the evacuation route(s) in accordance with the determined maximum evacuation time in the event of a fire; and providing passive fire protection to equipment and/or piping on the platform 14, 16 in order to prevent escalation of the fire that would create a risk to personnel on the evacuation route(s) during the determined evacuation time.
OPTIMISING FIRE PROTECTION FOR AN OFFSHORE PLATFORM
KRØGER DAGFINN (author) / SOLBERG BJARNE ALEXANDER (author)
2019-07-11
Patent
Electronic Resource
English