A platform for research: civil engineering, architecture and urbanism
METHOD OF PREPARING A SOLID SOLUTION CERAMIC MATERIAL HAVING INCREASED ELECTROMECHANICAL STRAIN, AND CERAMIC MATERIALS OBTAINABLE THEREFROM
The present invention relates to a method of preparing a solid solution ceramic material having increased electromechanical strain, as well as ceramic materials obtainable therefrom and uses thereof. In one aspect, the present invention provides a method A method of increasing electromechanical strain in a solid solution ceramic material which exhibits an electric field induced strain derived from a reversible transition from a non-polar state to a polar state; i) determining a molar ratio of at least one polar perovskite compound having a polar crystallographic point group to at least one non-polar perovskite compound having a non-polar crystallographic point group which, when combined to form a solid solution, forms a ceramic material with a major portion of a non-polar state; ii) determining the maximum polarization, Pmax, remanent polarisation, Pr, and the difference, Pmax−Pr, for the solid solution formed in step i); and either: iii)a) modifying the molar ratio determined in step i) to form a different solid solution of the same perovskite compounds which exhibits an electric field induced strain and which has a greater difference, Pmax−Pr, between maximum polarization, Pmax, and remanent polarisation, Pr, than for the solid solution from step i), or; iii)b) adjusting the processing conditions used for preparing the solid solution formed in step i) to increase the difference, Pmax−Pr, in maximum polarization, Pmax, and remanent polarisation, Pr, of the solid solution.
METHOD OF PREPARING A SOLID SOLUTION CERAMIC MATERIAL HAVING INCREASED ELECTROMECHANICAL STRAIN, AND CERAMIC MATERIALS OBTAINABLE THEREFROM
The present invention relates to a method of preparing a solid solution ceramic material having increased electromechanical strain, as well as ceramic materials obtainable therefrom and uses thereof. In one aspect, the present invention provides a method A method of increasing electromechanical strain in a solid solution ceramic material which exhibits an electric field induced strain derived from a reversible transition from a non-polar state to a polar state; i) determining a molar ratio of at least one polar perovskite compound having a polar crystallographic point group to at least one non-polar perovskite compound having a non-polar crystallographic point group which, when combined to form a solid solution, forms a ceramic material with a major portion of a non-polar state; ii) determining the maximum polarization, Pmax, remanent polarisation, Pr, and the difference, Pmax−Pr, for the solid solution formed in step i); and either: iii)a) modifying the molar ratio determined in step i) to form a different solid solution of the same perovskite compounds which exhibits an electric field induced strain and which has a greater difference, Pmax−Pr, between maximum polarization, Pmax, and remanent polarisation, Pr, than for the solid solution from step i), or; iii)b) adjusting the processing conditions used for preparing the solid solution formed in step i) to increase the difference, Pmax−Pr, in maximum polarization, Pmax, and remanent polarisation, Pr, of the solid solution.
METHOD OF PREPARING A SOLID SOLUTION CERAMIC MATERIAL HAVING INCREASED ELECTROMECHANICAL STRAIN, AND CERAMIC MATERIALS OBTAINABLE THEREFROM
CANN DAVID (author) / GIBBONS BRADY (author) / MARDILOVICH PETER (author)
2022-06-30
Patent
Electronic Resource
English
European Patent Office | 2022
|European Patent Office | 2020
|European Patent Office | 2022
|European Patent Office | 2021
|