A platform for research: civil engineering, architecture and urbanism
SINTERED ZIRCONIA BALLS
A sintered bead and an associated method. The sintered bead has the following chemical composition, as mass percentages on the basis of the oxides: ZrO2+HfO2+Y2O3+CeO2: remainder to 100%; 0%≤Al2O3≤1.5%; CaO≤2%; oxides other than ZrO2, HfO2, Y2O3, CeO2, Al2O3 and CaO: ≤5%. The contents of Y2O3 and CeO2, as molar percentages on the basis of the sum of ZrO2, HfO2, Y2O3 and CeO2, being such that 1.8%≤Y2O3≤2.5% and 0.1%≤CeO2≤0.9%. The sintered bead has following crystalline phases, as mass percentages on the basis of the crystalline phases and for a total of 100%: stabilized zirconia: remainder to 100%; monoclinic zirconia: ≤10%; crystalline phases other than stabilized zirconia and monoclinic zirconia: <7%.
SINTERED ZIRCONIA BALLS
A sintered bead and an associated method. The sintered bead has the following chemical composition, as mass percentages on the basis of the oxides: ZrO2+HfO2+Y2O3+CeO2: remainder to 100%; 0%≤Al2O3≤1.5%; CaO≤2%; oxides other than ZrO2, HfO2, Y2O3, CeO2, Al2O3 and CaO: ≤5%. The contents of Y2O3 and CeO2, as molar percentages on the basis of the sum of ZrO2, HfO2, Y2O3 and CeO2, being such that 1.8%≤Y2O3≤2.5% and 0.1%≤CeO2≤0.9%. The sintered bead has following crystalline phases, as mass percentages on the basis of the crystalline phases and for a total of 100%: stabilized zirconia: remainder to 100%; monoclinic zirconia: ≤10%; crystalline phases other than stabilized zirconia and monoclinic zirconia: <7%.
SINTERED ZIRCONIA BALLS
LINTINGRE ERIC (author) / WISS FRÉDÉRIC (author)
2023-06-29
Patent
Electronic Resource
English
IPC:
C04B
Kalk
,
LIME
European Patent Office | 2025
|