A platform for research: civil engineering, architecture and urbanism
Solid panels, composite panels, sandwich panels, tabletops, countertops, and doors made with any type of inner core material tend to warp, bend, or twist during the service life of the product. Prior solutions included adding, inserting, or embedding steel rods, steel frames, even steel pipes in an effort to reduce warping, but this adds considerable weight to the end product introducing a whole new set of problems. Aluminum tubes or extrusions are a lighter weight alternative to steel but also come with its own set of challenges, especially for sanding and gluing. This invention will address these issues while remaining lightweight, increasing strength, and preventing and tendencies to warp.Embodiments of the disclosure are directed towards a composite stiffener that can be manufactured and inserted or used as an alternative substrate material to create high precision true flat (truly flat) products that are less likely to warp, bend, or twist during the service life of the product. Embodiments of the composite stiffener include a uniquely designed stiffening material assembled in a designed matrix layout of flat strips, boxes, rectangles, or other shapes. The composite stiffener is positioned in various configurations either alone or in addition to any partial or complete core material inside the sandwich panel to enhance the core strength of the resulting product. The composite stiffener is inserted to compliment another core material or otherwise embedded in between layers of laminated material substantially increasing the strength, thusly preventing movement of flat building materials (skins) that would normally be subject to movement due to stress, regular use, or exposure to environmental conditions. The composite stiffener may function independently as a core material or may be added to other core material to add toughness and rigidity to the other composite materials or skins. The composite stiffener may be placed in any configuration, alone or with other material to achieve products that lay more flat with less risk of warp. This invention specifically is associated with the efficacy of the composite stiffener as it is used inside of other products which may have the tendency to move throughout its intended lifespan. Though examples of panels, posts, and beams are used as examples of how to use this composite stiffener, this invention relates only to the composite stiffener itself and the significant enhancement it offers when used inside other products not being limited to just panels, posts, and beams.
Solid panels, composite panels, sandwich panels, tabletops, countertops, and doors made with any type of inner core material tend to warp, bend, or twist during the service life of the product. Prior solutions included adding, inserting, or embedding steel rods, steel frames, even steel pipes in an effort to reduce warping, but this adds considerable weight to the end product introducing a whole new set of problems. Aluminum tubes or extrusions are a lighter weight alternative to steel but also come with its own set of challenges, especially for sanding and gluing. This invention will address these issues while remaining lightweight, increasing strength, and preventing and tendencies to warp.Embodiments of the disclosure are directed towards a composite stiffener that can be manufactured and inserted or used as an alternative substrate material to create high precision true flat (truly flat) products that are less likely to warp, bend, or twist during the service life of the product. Embodiments of the composite stiffener include a uniquely designed stiffening material assembled in a designed matrix layout of flat strips, boxes, rectangles, or other shapes. The composite stiffener is positioned in various configurations either alone or in addition to any partial or complete core material inside the sandwich panel to enhance the core strength of the resulting product. The composite stiffener is inserted to compliment another core material or otherwise embedded in between layers of laminated material substantially increasing the strength, thusly preventing movement of flat building materials (skins) that would normally be subject to movement due to stress, regular use, or exposure to environmental conditions. The composite stiffener may function independently as a core material or may be added to other core material to add toughness and rigidity to the other composite materials or skins. The composite stiffener may be placed in any configuration, alone or with other material to achieve products that lay more flat with less risk of warp. This invention specifically is associated with the efficacy of the composite stiffener as it is used inside of other products which may have the tendency to move throughout its intended lifespan. Though examples of panels, posts, and beams are used as examples of how to use this composite stiffener, this invention relates only to the composite stiffener itself and the significant enhancement it offers when used inside other products not being limited to just panels, posts, and beams.
Composite Stiffener
SING PETER (author)
2024-08-22
Patent
Electronic Resource
English
IPC:
E04B
Allgemeine Baukonstruktionen
,
GENERAL BUILDING CONSTRUCTIONS