A platform for research: civil engineering, architecture and urbanism
Basic mechanism of elastic jacking and impact of fracture aperture change on grout spread, transmissivity and penetrability
One of the most important parameters in the grouting of rock fractures is the applied pressure. This produces the driving force on the Bingham group material that causes it to penetrate the fracture. However, deciding the optimum pumping pressure is challenging. Using too high a pressure not only causes the grout to spread beyond the desired area, but, if it exceeds the minimum in situ stress in the rock mass, may also cause jacking of the fractures. This may lead to uncontrolled uplift. With a lower grout pressure, this "ultimate state" (jacking) can be avoided, although the pressurized grout still may induce smaller elastic deformations during pumping, and these may become irreversible when the grout has hardened. In previous studies, various theoretical approaches to distinguish the onset of these elastic and non-elastic deformations have been described and evaluated. However, the merits and disadvantages of theoretical approaches in general have been questionable. In the current study, the basic mechanism of elastic jacking is described, and its negative consequences are analyzed and quantified. These are the prolongation of grouting time, and the reduction in sealing efficiency. The role of an increased grouting pressure is evaluated by considering its positive effect in improving the penetrability and comparing this with the potential negative consequences. Case studies from two projects (the THX and Citybanan projects) are studied to examine the efficiency of the work that was carried out on site. The results indicate a high-applied pressure can have negative effect on the grouting procedure, and that this effect is significant in fractures situated in weak rock at shallow depth. It is concluded that unwanted fracture deformations and their negative consequences can be eliminated by defining appropriate stop criteria in advance of grouting, and confirming their suitability during pumping by the use of theoretical approach presented here. In general, this will allow the use of lower pump pressure and allow better control of the grout spread.
Basic mechanism of elastic jacking and impact of fracture aperture change on grout spread, transmissivity and penetrability
One of the most important parameters in the grouting of rock fractures is the applied pressure. This produces the driving force on the Bingham group material that causes it to penetrate the fracture. However, deciding the optimum pumping pressure is challenging. Using too high a pressure not only causes the grout to spread beyond the desired area, but, if it exceeds the minimum in situ stress in the rock mass, may also cause jacking of the fractures. This may lead to uncontrolled uplift. With a lower grout pressure, this "ultimate state" (jacking) can be avoided, although the pressurized grout still may induce smaller elastic deformations during pumping, and these may become irreversible when the grout has hardened. In previous studies, various theoretical approaches to distinguish the onset of these elastic and non-elastic deformations have been described and evaluated. However, the merits and disadvantages of theoretical approaches in general have been questionable. In the current study, the basic mechanism of elastic jacking is described, and its negative consequences are analyzed and quantified. These are the prolongation of grouting time, and the reduction in sealing efficiency. The role of an increased grouting pressure is evaluated by considering its positive effect in improving the penetrability and comparing this with the potential negative consequences. Case studies from two projects (the THX and Citybanan projects) are studied to examine the efficiency of the work that was carried out on site. The results indicate a high-applied pressure can have negative effect on the grouting procedure, and that this effect is significant in fractures situated in weak rock at shallow depth. It is concluded that unwanted fracture deformations and their negative consequences can be eliminated by defining appropriate stop criteria in advance of grouting, and confirming their suitability during pumping by the use of theoretical approach presented here. In general, this will allow the use of lower pump pressure and allow better control of the grout spread.
Basic mechanism of elastic jacking and impact of fracture aperture change on grout spread, transmissivity and penetrability
Rafi, Jalaleddin Yaghoobi (author) / Stille, Håkan
2015
Article (Journal)
English
BKL:
56.22
Unterirdisches Bauen, Tunnelbau
Correlations between Fracture Size, Transmissivity, and Aperture
British Library Conference Proceedings | 2003
|British Library Online Contents | 2017
|Control of rock jacking considering spread of grout and grouting pressure
British Library Online Contents | 2014
|