A platform for research: civil engineering, architecture and urbanism
Numerical model for rock bolts with consideration of rock joint movements
Summary The stability of any underground structure during and after excavation is the most important question for designers, because any kind of collapse may destroy large parts of a finished tunnel, causing major repairs and time loss. Preliminary calculations are therefore of great importance. A calculation is only useful, however, when the underlying numerical model correctly describes natural behaviour. The rock bolts used in tunnel excavations are mostly untensioned grouted bolts, and this type of bolt is the main focus of this work. From the model of the grouted bolt, other types of rock bolts can also be modelled by the theory presented herein. Bolt behaviour in intact rock mass is so different from behaviour when a bolt intersects a joint, that a model with two different elements is suggested for a numerical calculation; one element for the bolt in the rock mass and one as a bolt intersecting with a joint. The model for both elements is verified by the experimental results. The numerical results correspond favourably with the experimental work. A variation of the parameters important for the behaviour of the bolt in intersection with the joint is shown. As an implementation of the bolt model, the numerical simulation of excavation and stabilisation of one road tunnel is presented.
Numerical model for rock bolts with consideration of rock joint movements
Summary The stability of any underground structure during and after excavation is the most important question for designers, because any kind of collapse may destroy large parts of a finished tunnel, causing major repairs and time loss. Preliminary calculations are therefore of great importance. A calculation is only useful, however, when the underlying numerical model correctly describes natural behaviour. The rock bolts used in tunnel excavations are mostly untensioned grouted bolts, and this type of bolt is the main focus of this work. From the model of the grouted bolt, other types of rock bolts can also be modelled by the theory presented herein. Bolt behaviour in intact rock mass is so different from behaviour when a bolt intersects a joint, that a model with two different elements is suggested for a numerical calculation; one element for the bolt in the rock mass and one as a bolt intersecting with a joint. The model for both elements is verified by the experimental results. The numerical results correspond favourably with the experimental work. A variation of the parameters important for the behaviour of the bolt in intersection with the joint is shown. As an implementation of the bolt model, the numerical simulation of excavation and stabilisation of one road tunnel is presented.
Numerical model for rock bolts with consideration of rock joint movements
Marenče, M. (author) / Swoboda, G. (author)
1995
Article (Journal)
English
Local classification TIB:
560/4815/6545
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
Numerical model for rock bolts with consideration of rock joint movements
Springer Verlag | 1995
|Engineering Index Backfile | 1954
|A new numerical model of rock bolts used in jointed rock
British Library Conference Proceedings | 2000
|Behaviour of Bolts in Rock and Testing of Rock Bolts
NTIS | 1984
|The behaviour of bolts in rock and testing of rock bolts
TIBKAT | 1984
|