A platform for research: civil engineering, architecture and urbanism
Improving availability and accuracy of GPS/BDS positioning using QZSS for single receiver
Abstract The Quasi-Zenith Satellite System (QZSS) service area covers East Asia and Oceania region and its platform is multi-constellation GNSS. The QZSS system is not required to work in a stand-alone mode, but together with data from other GNSS satellites. QZSS data is processed and analysed for single receiver together with GPS/BDS data in the paper. Single point positioning mode, static precise point positioning mode and kinematic precise point positioning mode are used to assess the impact of QZSS on GPS/BDS single receiver positioning. The data corresponding to the day 2015-02-05 taken from the IGS station of CUT0 is considered. The sky plots and number of satellite for the various satellite systems are given. The PDOP (Position Dilution of Precision) value, position error and solution success rate under different cut-off elevation angles are compared between GPS/BDS and GPS/BDS/QZSS. The results indicate that QZSS is able to decrease the position error and increase success rate of resolution for GPS/BDS single receiver positioning, especially under high cut-off elevation angle. The availability and accuracy of GPS/BDS positioning are improved using QZSS for single receiver.
Improving availability and accuracy of GPS/BDS positioning using QZSS for single receiver
Abstract The Quasi-Zenith Satellite System (QZSS) service area covers East Asia and Oceania region and its platform is multi-constellation GNSS. The QZSS system is not required to work in a stand-alone mode, but together with data from other GNSS satellites. QZSS data is processed and analysed for single receiver together with GPS/BDS data in the paper. Single point positioning mode, static precise point positioning mode and kinematic precise point positioning mode are used to assess the impact of QZSS on GPS/BDS single receiver positioning. The data corresponding to the day 2015-02-05 taken from the IGS station of CUT0 is considered. The sky plots and number of satellite for the various satellite systems are given. The PDOP (Position Dilution of Precision) value, position error and solution success rate under different cut-off elevation angles are compared between GPS/BDS and GPS/BDS/QZSS. The results indicate that QZSS is able to decrease the position error and increase success rate of resolution for GPS/BDS single receiver positioning, especially under high cut-off elevation angle. The availability and accuracy of GPS/BDS positioning are improved using QZSS for single receiver.
Improving availability and accuracy of GPS/BDS positioning using QZSS for single receiver
Li, Zengke (author) / Chen, Fu (author)
2016
Article (Journal)
English
High accuracy precise point positioning using a single frequency GPS receiver
British Library Online Contents | 2011
|Galileo and QZSS precise orbit and clock determination using new satellite metadata
Online Contents | 2019
|Galileo and QZSS precise orbit and clock determination using new satellite metadata
Online Contents | 2019
|Current Status of QZSS and Pilot Experiments in South East Asia
Springer Verlag | 2019
|