A platform for research: civil engineering, architecture and urbanism
Analysis of Rock Load for Tunnel Lining Design
Abstract Rock load relaxed by surrounding ground due to a tunnel excavation is one of the most important parameters in support system design of underground structures. There are three different methods for estimating rock load, namely, empirical solutions, convergence-confinement method (CCM), and numerical techniques. In the present study, rock loads acting on the final support system of Bazi-Deraz water conveyance tunnel at its different sections are estimated using aforementioned methods. Results show that, in a hydrostatic stress field, empirical and plastic zone-based numerical methods provide maximum and minimum rock load estimates, respectively, and numerical technique which is based on local safety factor obtains a more accurate rock load than the method based on plastic zone. Comparing empirical and analytical methods, rock load estimation using Goel-Jethwa’s method obtains the closest values to analytical results in hydrostatic stress field. It is, however, observed that these methods cannot be used in non-hydrostatic stress fields. Therefore, it is proposed to utilize a coupled numerical-CCM method to estimate rock load when stress coefficient K is larger than 1.
Analysis of Rock Load for Tunnel Lining Design
Abstract Rock load relaxed by surrounding ground due to a tunnel excavation is one of the most important parameters in support system design of underground structures. There are three different methods for estimating rock load, namely, empirical solutions, convergence-confinement method (CCM), and numerical techniques. In the present study, rock loads acting on the final support system of Bazi-Deraz water conveyance tunnel at its different sections are estimated using aforementioned methods. Results show that, in a hydrostatic stress field, empirical and plastic zone-based numerical methods provide maximum and minimum rock load estimates, respectively, and numerical technique which is based on local safety factor obtains a more accurate rock load than the method based on plastic zone. Comparing empirical and analytical methods, rock load estimation using Goel-Jethwa’s method obtains the closest values to analytical results in hydrostatic stress field. It is, however, observed that these methods cannot be used in non-hydrostatic stress fields. Therefore, it is proposed to utilize a coupled numerical-CCM method to estimate rock load when stress coefficient K is larger than 1.
Analysis of Rock Load for Tunnel Lining Design
Taghizadeh, Hashem (author) / Zare, Shokrollah (author) / Mazraehli, Masoud (author)
2020
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Estimation of rock load for the design of 2-arch tunnel lining
British Library Conference Proceedings | 2007
|Lining a tunnel in Swelling rock
Engineering Index Backfile | 1912
|TIBKAT | 2004
Modelling structural grout load for the tunnel lining analysis
British Library Conference Proceedings | 2003
|