A platform for research: civil engineering, architecture and urbanism
Fire safety regulations and performance of fibre-reinforced polymer composite ship structures
This article presents a procedure for how to relate fire performance of fibre-reinforced polymer composite structures to the fire safety regulations in Safety of Life at Sea II-2. It can be used as basis when performing a fire risk assessment to demonstrate that the degree of safety is at least equivalent to that provided by prescriptive requirements. A key issue is that requirements and test methods are based on the use of steel structures, which requires seeking the safety level implied by the regulations. This was demonstrated for the regulations and introduced hazards affecting the growth stage of a fire. The safety implied by regulations was related to fire performance of fibre-reinforced polymer composite by reference to fire tests involving typical materials and some relevant safety measures. Ignition was described as uncritical, while the fire growth on a fibre-reinforced polymer composite surface can be rapid. Flammability requirements are generally not achieved by an untreated panel but different means can be used for protection. A fire protective coating can be used to prevent ignition, and sprinkler is effective for both fire prevention and extinguishment on interior and external surfaces. For interior spaces, it can be relevant with a coating or thermal insulation also to hinder increased generation of smoke and toxic gases during fire evacuation. In all, it is shown that fire hazards during the fire growth stage are manageable, and a foundation is lain out for a well-structured fire risk assessment.
Fire safety regulations and performance of fibre-reinforced polymer composite ship structures
This article presents a procedure for how to relate fire performance of fibre-reinforced polymer composite structures to the fire safety regulations in Safety of Life at Sea II-2. It can be used as basis when performing a fire risk assessment to demonstrate that the degree of safety is at least equivalent to that provided by prescriptive requirements. A key issue is that requirements and test methods are based on the use of steel structures, which requires seeking the safety level implied by the regulations. This was demonstrated for the regulations and introduced hazards affecting the growth stage of a fire. The safety implied by regulations was related to fire performance of fibre-reinforced polymer composite by reference to fire tests involving typical materials and some relevant safety measures. Ignition was described as uncritical, while the fire growth on a fibre-reinforced polymer composite surface can be rapid. Flammability requirements are generally not achieved by an untreated panel but different means can be used for protection. A fire protective coating can be used to prevent ignition, and sprinkler is effective for both fire prevention and extinguishment on interior and external surfaces. For interior spaces, it can be relevant with a coating or thermal insulation also to hinder increased generation of smoke and toxic gases during fire evacuation. In all, it is shown that fire hazards during the fire growth stage are manageable, and a foundation is lain out for a well-structured fire risk assessment.
Fire safety regulations and performance of fibre-reinforced polymer composite ship structures
Evegren, Franz (author) / Hertzberg, Tommy (author)
2017-02-01
11 pages
Article (Journal)
Electronic Resource
English
Fire safety regulations and performance of fibre-reinforced polymer composite ship structures
Online Contents | 2017
|Fire safety regulations and performance of fibre-reinforced polymer composite ship structures
Online Contents | 2015
|Fire Performance of Loaded Fibre Reinforced Polymer Multicellular Composite Structures
Springer Verlag | 2023
|