A platform for research: civil engineering, architecture and urbanism
Transition Reference Temperature for 20MnMoNi55 RPV Steel at Different Loading Rates
Abstract Fracture toughness is the main designing criterion of nuclear power plant. Due to neutron embrittlement, fracture toughness of reactor pressure vessel steel becomes low. This type of phenomenon can also be observed in cryogenic temperature. But in between a certain subzero temperature range, values of fracture toughness of ferritic steel are scatter in nature. This scatter is modelled by a methodology named master curve. Master curve can be governed by a single parameter which is called reference temperature (T0). T0 is defined as a measurement of embrittlement. Crack length, thickness and loading rate have influence on fracture toughness of RPV steel. The influence of loading rate over T0 has been studied on different materials in several researches. Kim Wallin established an empirical relation between loading rate and reference temperature with the help of huge data set of different RPV steels. Sreenivasan has also proposed an empirical relation to compute quasi-static T0 from dynamic T0. In the present study, 1T-CT fracture experiments are conducted at subzero temperature (−100 °C) with varying loading rates ranging from 0.625 MPa√m/s to 417.3 MPa√m/s for 20MnMoNi55 reactor pressure vessel (RPV) steel. Master curve methodology (ASTM E1921-09a) is then used for determination of T0 for each loading rates. T0 is also estimated from Wallin’s empirical relationship and compared with experimental results for this particular material. Quasi-static T0 has also been estimated from T0 at different higher loading rates using empirical relationship proposed by Sreenivasan.
Transition Reference Temperature for 20MnMoNi55 RPV Steel at Different Loading Rates
Abstract Fracture toughness is the main designing criterion of nuclear power plant. Due to neutron embrittlement, fracture toughness of reactor pressure vessel steel becomes low. This type of phenomenon can also be observed in cryogenic temperature. But in between a certain subzero temperature range, values of fracture toughness of ferritic steel are scatter in nature. This scatter is modelled by a methodology named master curve. Master curve can be governed by a single parameter which is called reference temperature (T0). T0 is defined as a measurement of embrittlement. Crack length, thickness and loading rate have influence on fracture toughness of RPV steel. The influence of loading rate over T0 has been studied on different materials in several researches. Kim Wallin established an empirical relation between loading rate and reference temperature with the help of huge data set of different RPV steels. Sreenivasan has also proposed an empirical relation to compute quasi-static T0 from dynamic T0. In the present study, 1T-CT fracture experiments are conducted at subzero temperature (−100 °C) with varying loading rates ranging from 0.625 MPa√m/s to 417.3 MPa√m/s for 20MnMoNi55 reactor pressure vessel (RPV) steel. Master curve methodology (ASTM E1921-09a) is then used for determination of T0 for each loading rates. T0 is also estimated from Wallin’s empirical relationship and compared with experimental results for this particular material. Quasi-static T0 has also been estimated from T0 at different higher loading rates using empirical relationship proposed by Sreenivasan.
Transition Reference Temperature for 20MnMoNi55 RPV Steel at Different Loading Rates
Paul, Swagatam (author) / Acharyya, Sanjib Kumar (author) / Sahoo, Prasanta (author) / Chattopadhyay, Jayanta (author)
2019-01-01
22 pages
Article/Chapter (Book)
Electronic Resource
English
Incremental cyclic fracture behaviour of 20MnMoNi55 steel at room temperature
British Library Online Contents | 2015
|Stretch zone formation in cyclic fracture of 20MnMoNi55 pressure vessel steel
British Library Online Contents | 2015
|Stretch zone formation in cyclic fracture of 20MnMoNi55 pressure vessel steel
British Library Online Contents | 2015
|