A platform for research: civil engineering, architecture and urbanism
Study of the Track Dynamics for Optimizing the Railway Superstructure
Brazil is currently experiencing an expansion of the rail freight modal participation in the national transportation matrix, so that different strategies of capacity increase have been discussed in the country. One of the main strategies refers to the increase of axle load of the railway vehicle, in which the study of the railway pavement becomes essential to verify its capability to resist the new load as well as to understand the impacts in terms of track stress–strain. Thus, the present paper used a finite element method (FEM) to calculate the variation of the track module, rail bending stress and subgrade normal stress in 184 arrangements of pavement structure simulations. For each track element arrangement, a material property or a geometry property variation of the studied layer was performed in order to identify the track behavior. In this study, Systrain was used, a railway pavement analysis software developed by Silva Filho (Contribuição para o desenvolvimento de um método de dimensionamento mecanístico-empírico de pavimentos ferroviários com foco nos solos tropicais. Curso de doutorado em engenharia de defesa, Instituto Militar de Engenharia, 2018 [1]) Contribuição para o desenvolvimento de um método de dimensionamento mecanístico-empírico de pavimentos ferroviários com foco nos solos tropicais. Curso de doutorado em engenharia de defesa, Instituto Militar de Engenharia). As a result, it was verified that the influence of the ballast shoulder and ballast geometry on the stress–strain behavior of the track is low. On the other hand, the foundation layers, especially the subgrade layer, had shown a great influence on the support conditions of the railway pavement.
Study of the Track Dynamics for Optimizing the Railway Superstructure
Brazil is currently experiencing an expansion of the rail freight modal participation in the national transportation matrix, so that different strategies of capacity increase have been discussed in the country. One of the main strategies refers to the increase of axle load of the railway vehicle, in which the study of the railway pavement becomes essential to verify its capability to resist the new load as well as to understand the impacts in terms of track stress–strain. Thus, the present paper used a finite element method (FEM) to calculate the variation of the track module, rail bending stress and subgrade normal stress in 184 arrangements of pavement structure simulations. For each track element arrangement, a material property or a geometry property variation of the studied layer was performed in order to identify the track behavior. In this study, Systrain was used, a railway pavement analysis software developed by Silva Filho (Contribuição para o desenvolvimento de um método de dimensionamento mecanístico-empírico de pavimentos ferroviários com foco nos solos tropicais. Curso de doutorado em engenharia de defesa, Instituto Militar de Engenharia, 2018 [1]) Contribuição para o desenvolvimento de um método de dimensionamento mecanístico-empírico de pavimentos ferroviários com foco nos solos tropicais. Curso de doutorado em engenharia de defesa, Instituto Militar de Engenharia). As a result, it was verified that the influence of the ballast shoulder and ballast geometry on the stress–strain behavior of the track is low. On the other hand, the foundation layers, especially the subgrade layer, had shown a great influence on the support conditions of the railway pavement.
Study of the Track Dynamics for Optimizing the Railway Superstructure
Lecture Notes in Civil Engineering
Tutumluer, Erol (editor) / Nazarian, Soheil (editor) / Al-Qadi, Imad (editor) / Qamhia, Issam I.A. (editor) / Silva Filho, J. C. (author) / Skwarok, A. M. (author) / Witiuk, R. L. (author)
2021-08-05
16 pages
Article/Chapter (Book)
Electronic Resource
English
Investigation of the Influences of Track Superstructure Parameters on Ballasted Railway Track Design
DOAJ | 2015
|METHOD FOR PRODUCING A SLEEPER FOR USE IN THE RAILWAY TRACK SUPERSTRUCTURE
European Patent Office | 2017
|