A platform for research: civil engineering, architecture and urbanism
Theory of the Fractional Quantum Hall Effect
Both integer and fractional quantum Hall effects evolve from the quantization of the cyclotron motion of an electron in a two-dimensional electron gas (2DEG) in a perpendicular magnetic field, B. In the symmetric gauge \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\overrightarrow {\text{A}} = {\text{H}}( - y,x)/2)$$ \end{document} the single-electron kinetic energy operator
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$t = \frac{1}{{2m}}{\left( {\overrightarrow p + \frac{e}{c}\overrightarrow A } \right)^2}$$ \end{document}
has eigenfunctions1
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\phi _{n,m}}(\overrightarrow r ) = \frac{{{e^{|Z{|^2}/4{l^2}}}}}{{\sqrt {2\pi } }}{G^{m,n}}(iZ/l)$$ \end{document}
and eigenvalues
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\varepsilon _{n,m}} = \overline n {\omega _c}(n + \frac{1}{2})$$ \end{document}
Theory of the Fractional Quantum Hall Effect
Both integer and fractional quantum Hall effects evolve from the quantization of the cyclotron motion of an electron in a two-dimensional electron gas (2DEG) in a perpendicular magnetic field, B. In the symmetric gauge \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\overrightarrow {\text{A}} = {\text{H}}( - y,x)/2)$$ \end{document} the single-electron kinetic energy operator
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$t = \frac{1}{{2m}}{\left( {\overrightarrow p + \frac{e}{c}\overrightarrow A } \right)^2}$$ \end{document}
has eigenfunctions1
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\phi _{n,m}}(\overrightarrow r ) = \frac{{{e^{|Z{|^2}/4{l^2}}}}}{{\sqrt {2\pi } }}{G^{m,n}}(iZ/l)$$ \end{document}
and eigenvalues
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\varepsilon _{n,m}} = \overline n {\omega _c}(n + \frac{1}{2})$$ \end{document}
Theory of the Fractional Quantum Hall Effect
Kallio, A. J. (editor) / Pajanne, E. (editor) / Bishop, R. F. (editor) / MacDonald, A. H. (author)
Recent Progress in Many-Body Theories ; Chapter: 9 ; 1 ; 83-101
1988-01-01
19 pages
Article/Chapter (Book)
Electronic Resource
English
Fractional Quantum Hall Effect: Introduction
Springer Verlag | 1995
|Numerical Investigation of the Fractional Quantum Hall Effect
Springer Verlag | 1988
|The Quantum Hall Effects : Integral and Fractional
TIBKAT | 1995
|Thermopower of composite fermions in the fractional quantum Hall effect regime
British Library Online Contents | 2003
|Excitations in the Fractional Quantum Hall Effect at ν=1/2: Layered Electron Systems
Springer Verlag | 1988
|