A platform for research: civil engineering, architecture and urbanism
Back-analysis of one-dimensional consolidation settlement
This paper reevaluated the disadvantages of existing observational methods using both theoretical and laboratory consolidation settlement–time (S–t) relationships. Two observational methods that account for the effect of sampling range were developed by using the Taylor model as a substitute for Terzaghi’s solution. The significance of the sampling range effect in predicting the end of consolidation settlement (S100) and the consolidation coefficient (cv) was verified through application to the above S–t data. The further application of the proposed methods to three case records with some prerequisites produced slightly higher S100 and lower cv values compared with two routine methods and indicated that the back-analyzed S–t curves correlated excellently with the in situ monitored curves. The latter finding may support the hypothesis that the in situ consolidation settlement curves are the family of laboratory consolidation settlement curves. In this case, consolidation-based prediction was applicable to such in situ consolidation settlement, thereby suggesting that both in situ and laboratory consolidation settlement curves behave with an identical cv value as verified in a homogeneous clay deposit. The above approach was also confirmed to be applicable to prolonged yet incompletely measured settlement data.
Back-analysis of one-dimensional consolidation settlement
This paper reevaluated the disadvantages of existing observational methods using both theoretical and laboratory consolidation settlement–time (S–t) relationships. Two observational methods that account for the effect of sampling range were developed by using the Taylor model as a substitute for Terzaghi’s solution. The significance of the sampling range effect in predicting the end of consolidation settlement (S100) and the consolidation coefficient (cv) was verified through application to the above S–t data. The further application of the proposed methods to three case records with some prerequisites produced slightly higher S100 and lower cv values compared with two routine methods and indicated that the back-analyzed S–t curves correlated excellently with the in situ monitored curves. The latter finding may support the hypothesis that the in situ consolidation settlement curves are the family of laboratory consolidation settlement curves. In this case, consolidation-based prediction was applicable to such in situ consolidation settlement, thereby suggesting that both in situ and laboratory consolidation settlement curves behave with an identical cv value as verified in a homogeneous clay deposit. The above approach was also confirmed to be applicable to prolonged yet incompletely measured settlement data.
Back-analysis of one-dimensional consolidation settlement
Acta Geotech.
Chung, S. G. (author) / Kweon, H. J. (author) / Chung, C. G. (author)
Acta Geotechnica ; 19 ; 239-254
2024-01-01
16 pages
Article (Journal)
Electronic Resource
English
Consolidation models , Consolidation settlement , Creep , Effect of sampling range , Observational methods Engineering , Geoengineering, Foundations, Hydraulics , Solid Mechanics , Geotechnical Engineering & Applied Earth Sciences , Soil Science & Conservation , Soft and Granular Matter, Complex Fluids and Microfluidics
Back-analysis of one-dimensional consolidation settlement
Springer Verlag | 2024
|Wiley | 2010
|Wiley | 2016
|Consolidation analysis using the settlement rate-settlement (SRS) method
Elsevier | 2010
|Consolidation analysis using the settlement rate-settlement (SRS) method
Online Contents | 2010
|