A platform for research: civil engineering, architecture and urbanism
Influence of Static and Dynamic Rock Properties on Drillability Prognosis for Mining and Tunnelling Projects
Land scarcity for infrastructure development and mining in developing nations such as India and Bhutan call for the adoption of effective underground space utilization techniques. Excavation rates, in tunnels from hydroelectric projects and development headings of underground mines implementing drill and blast methodology, need to be geared up to keep pace with the developmental requirements. Such excavations demand extensive drilling lengths, and realistic prediction of rock drillability is highly essential for determining the progress vis-à-vis feasibility of such excavation projects. Rock drillability investigations were taken up in this study covering a stretch of about 7 km of Indian Aravalli hills and Bhutan Himalayan mountains covering 15 rock variants. Prior research has indicated that several physico-mechanical properties of the rock play a crucial role in drillability assessment. Multilayer perceptron neural network indicated that quartz content (QC) and rock strength factor (RSF) predominantly influence penetration rates. A drillability prognosis model was developed that could explain the variance in laboratory penetration rate (LPR) up to 82.7% signifying a high level of correlation. Both QC and RSF were found to have negative relationships with LPR. It is inferred that the developed model is applicable for the rocks having quartz content varying from 30.0 to 96.0%, RSF from 35.8 to 74.0 MPa, and alternatively UCS and BTS values ranging from 65 to 142 MPa and 2.6 to 18.8 MPa, respectively. Correlations indicated that LPR could be a potential indicator of expected field penetration rate when there is little information about the rock mass parameters.
Influence of Static and Dynamic Rock Properties on Drillability Prognosis for Mining and Tunnelling Projects
Land scarcity for infrastructure development and mining in developing nations such as India and Bhutan call for the adoption of effective underground space utilization techniques. Excavation rates, in tunnels from hydroelectric projects and development headings of underground mines implementing drill and blast methodology, need to be geared up to keep pace with the developmental requirements. Such excavations demand extensive drilling lengths, and realistic prediction of rock drillability is highly essential for determining the progress vis-à-vis feasibility of such excavation projects. Rock drillability investigations were taken up in this study covering a stretch of about 7 km of Indian Aravalli hills and Bhutan Himalayan mountains covering 15 rock variants. Prior research has indicated that several physico-mechanical properties of the rock play a crucial role in drillability assessment. Multilayer perceptron neural network indicated that quartz content (QC) and rock strength factor (RSF) predominantly influence penetration rates. A drillability prognosis model was developed that could explain the variance in laboratory penetration rate (LPR) up to 82.7% signifying a high level of correlation. Both QC and RSF were found to have negative relationships with LPR. It is inferred that the developed model is applicable for the rocks having quartz content varying from 30.0 to 96.0%, RSF from 35.8 to 74.0 MPa, and alternatively UCS and BTS values ranging from 65 to 142 MPa and 2.6 to 18.8 MPa, respectively. Correlations indicated that LPR could be a potential indicator of expected field penetration rate when there is little information about the rock mass parameters.
Influence of Static and Dynamic Rock Properties on Drillability Prognosis for Mining and Tunnelling Projects
Indian Geotech J
Siva Prasad, B. N. V. (author) / Murthy, V. M. S. R. (author) / Naik, Sripad R. (author)
Indian Geotechnical Journal ; 52 ; 765-779
2022-08-01
15 pages
Article (Journal)
Electronic Resource
English
Tunnelling performance estimation based on drillability testing
British Library Conference Proceedings | 1995
|Prediction of drillability in hard rock tunnelling by drilling and blasting
British Library Conference Proceedings | 1997
|Influence of Porous Structure Properties on Anti-Drillability Characteristics of Rock
Trans Tech Publications | 2013
|ARTIFICIAL CORE PREPARATION METHOD FOR ROCK DRILLABILITY TEST
European Patent Office | 2021
|Drilling Penetration Rate Estimation using Rock Drillability Characterization Index
Springer Verlag | 2016
|