A platform for research: civil engineering, architecture and urbanism
A Numerical Simulation and Comparison of Cutting Fluid Flow Characteristics through Gradual Contraction and Sudden Contraction Nozzle
Abstract Cutting fluid delivery plays an important role in every machining operation. Cutting fluid is generally delivered by a gradual converging nozzle. The present work shows an extensive numerical study on the performance of cutting fluid flow through gradual converging and sudden converging nozzles. The Nevier-Stokes and continuity equations are solved using the commercial CFD software FLUENT 6.3.26 that employs the control volume technique on a uniform staggered grid following the SIMPLE algorithm. For the sudden contraction configuration, two contraction ratios, 0.28 and 0.55, are taken. The following variables and their variations are computed for both sudden and gradual contraction: wall static pressure (WSP), wall shear stress (WSS), and centerline velocity (Vcenterline). For both gradual and sudden contraction, WSP, WSS, and Vcenterline increase with increases in Reynolds number. For a particular Re, the WSP decreases with increases in the length from the throat for both nozzle types. In the gradual converging nozzle, the WSS and Vcenterline increase with increases in the length from the throat; in contrast, in the sudden contraction configuration, the Vcenterline increases up to a few distances from the throat and afterward remains same up to the exit of the nozzle. For the same amount of increase in Vcenterline, the suddenly converging nozzle requires shorter lengths than the gradually converging nozzle.
A Numerical Simulation and Comparison of Cutting Fluid Flow Characteristics through Gradual Contraction and Sudden Contraction Nozzle
Abstract Cutting fluid delivery plays an important role in every machining operation. Cutting fluid is generally delivered by a gradual converging nozzle. The present work shows an extensive numerical study on the performance of cutting fluid flow through gradual converging and sudden converging nozzles. The Nevier-Stokes and continuity equations are solved using the commercial CFD software FLUENT 6.3.26 that employs the control volume technique on a uniform staggered grid following the SIMPLE algorithm. For the sudden contraction configuration, two contraction ratios, 0.28 and 0.55, are taken. The following variables and their variations are computed for both sudden and gradual contraction: wall static pressure (WSP), wall shear stress (WSS), and centerline velocity (Vcenterline). For both gradual and sudden contraction, WSP, WSS, and Vcenterline increase with increases in Reynolds number. For a particular Re, the WSP decreases with increases in the length from the throat for both nozzle types. In the gradual converging nozzle, the WSS and Vcenterline increase with increases in the length from the throat; in contrast, in the sudden contraction configuration, the Vcenterline increases up to a few distances from the throat and afterward remains same up to the exit of the nozzle. For the same amount of increase in Vcenterline, the suddenly converging nozzle requires shorter lengths than the gradually converging nozzle.
A Numerical Simulation and Comparison of Cutting Fluid Flow Characteristics through Gradual Contraction and Sudden Contraction Nozzle
Ghadai, Ranjan Kumar (author) / Kalita, Kanak (author) / Guha, Ashim (author) / Chakrabarti, Somnath (author)
Journal of The Institution of Engineers (India): Series C ; 99 ; 373-379
2016-06-20
7 pages
Article (Journal)
Electronic Resource
English
Flow behaviours at sudden contraction of open channel
Engineering Index Backfile | 1967
|Numerical investigation on the effect of sudden contraction on flow behavior in a 90-degree bend
Springer Verlag | 2017
|