A platform for research: civil engineering, architecture and urbanism
Durability and Strength of Geopolymer with Recycled Glass Powder Base for Clay Stabilization
Glass powder is one of the solid wastes that is being created at an increasing rate across the globe. Soft clayey soil, on the other hand, generally has to be improved before it can be used in building projects. The durability and strength of clayey soil changed by geopolymer produced with recycled glass powder (RGP) were investigated. The investigation included thawing-freezing (T-F), wet-drying (W-D), and unconfined compressive strength (UCS) tests. The curing duration, weight % of employed RGP, and activator (M) concentration were all investigated in this study. Experiments were also carried out on specimens that had been treated with 10% Portland cement for comparison. When comparing geopolymer-modified to Portland cement-modified specimens, UCS measurements revealed a fourfold improvement in compressive strength. The number of durability cycles for the specimen treated with geopolymer (10 cycles) was greater in the T-F experiment than for the specimen changed with 10% Portland cement (9 cycles), indicating that geopolymer with RGP base outperforms Portland cement in locations with frequent thawing-freezing. The cement specimens with 12 cycles durability were more durable in contrast to geopolymer specimens with 6 cycles durability in the W-D test. Geopolymer specimens were more durable against T-F than cement specimens in general.
Durability and Strength of Geopolymer with Recycled Glass Powder Base for Clay Stabilization
Glass powder is one of the solid wastes that is being created at an increasing rate across the globe. Soft clayey soil, on the other hand, generally has to be improved before it can be used in building projects. The durability and strength of clayey soil changed by geopolymer produced with recycled glass powder (RGP) were investigated. The investigation included thawing-freezing (T-F), wet-drying (W-D), and unconfined compressive strength (UCS) tests. The curing duration, weight % of employed RGP, and activator (M) concentration were all investigated in this study. Experiments were also carried out on specimens that had been treated with 10% Portland cement for comparison. When comparing geopolymer-modified to Portland cement-modified specimens, UCS measurements revealed a fourfold improvement in compressive strength. The number of durability cycles for the specimen treated with geopolymer (10 cycles) was greater in the T-F experiment than for the specimen changed with 10% Portland cement (9 cycles), indicating that geopolymer with RGP base outperforms Portland cement in locations with frequent thawing-freezing. The cement specimens with 12 cycles durability were more durable in contrast to geopolymer specimens with 6 cycles durability in the W-D test. Geopolymer specimens were more durable against T-F than cement specimens in general.
Durability and Strength of Geopolymer with Recycled Glass Powder Base for Clay Stabilization
KSCE J Civ Eng
Mohammadzadeh, Mohammad Ali (author) / Toufigh, Mohammad Mohsen (author) / Toufigh, Vahid (author)
KSCE Journal of Civil Engineering ; 27 ; 156-168
2023-01-01
13 pages
Article (Journal)
Electronic Resource
English
Recycled GFRP powder/slag-based geopolymer cured clay and preparation method thereof
European Patent Office | 2024
|British Library Online Contents | 2018
|High-durability recycled aggregate geopolymer concrete and preparation method thereof
European Patent Office | 2024
|