A platform for research: civil engineering, architecture and urbanism
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NOX) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92–4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NOX (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NOX) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92–4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NOX (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method
Chen, Yu-Liang (author) / Chen, Suming (author) / Tsai, Jin-Ming (author) / Tsai, Chao-Yin (author) / Fang, Hsin-Hsiung (author) / Yang, I-Chang (author) / Liu, Sen-Yuan (author)
Journal of Environmental Science and Health, Part A ; 47 ; 101-108
2012-01-01
8 pages
Article (Journal)
Electronic Resource
Unknown
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method
Online Contents | 2012
|British Library Online Contents | 2017
|Performance and Emissions of Motorcycle Engine Fueled with LPG-Ethanol by Port Injection
Springer Verlag | 2021
|Taylor & Francis Verlag | 2022
|