A platform for research: civil engineering, architecture and urbanism
Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis
Characterization of the asphalt concrete microstructure using two-dimensional (2-D) imaging techniques is an economically efficient approach. However, the features that have been captured and quantified using 2-D imaging in most published research have been limited to simplistic analyses of aggregate structure. The present research focused on introducing a more elaborate method of characterization of internal structure, and proposing new indices to relate to and explain rutting resistance performance of asphalt mixtures. The aggregate internal structure provides the skeleton of the asphalt concrete, which plays an important role in rutting resistance. It is shown that this structure can be captured using a combination of image analysis indices developed in this research, namely: number of aggregate-on-aggregate contact points, contact length/area, and contact plane orientation. These parameters are defined for both the total aggregates and for the effective load bearing aggregate structure, referred to as the ‘skeleton’ in this study. Software developed in a previous study and significantly modified for this paper, is used to process digital images of a set of asphalt mixtures with different gradations, binder contents, types of modification, and compaction efforts. The results demonstrate a correlation between the internal structure indices and the mixture rutting performance. Additionally, the indices were successfully used to capture the effect of compaction effort, gradation quality, and binder modification on the mixture internal structure.
Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis
Characterization of the asphalt concrete microstructure using two-dimensional (2-D) imaging techniques is an economically efficient approach. However, the features that have been captured and quantified using 2-D imaging in most published research have been limited to simplistic analyses of aggregate structure. The present research focused on introducing a more elaborate method of characterization of internal structure, and proposing new indices to relate to and explain rutting resistance performance of asphalt mixtures. The aggregate internal structure provides the skeleton of the asphalt concrete, which plays an important role in rutting resistance. It is shown that this structure can be captured using a combination of image analysis indices developed in this research, namely: number of aggregate-on-aggregate contact points, contact length/area, and contact plane orientation. These parameters are defined for both the total aggregates and for the effective load bearing aggregate structure, referred to as the ‘skeleton’ in this study. Software developed in a previous study and significantly modified for this paper, is used to process digital images of a set of asphalt mixtures with different gradations, binder contents, types of modification, and compaction efforts. The results demonstrate a correlation between the internal structure indices and the mixture rutting performance. Additionally, the indices were successfully used to capture the effect of compaction effort, gradation quality, and binder modification on the mixture internal structure.
Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis
Sefidmazgi, Nima Roohi (author) / Tashman, Laith (author) / Bahia, Hussain (author)
Road Materials and Pavement Design ; 13 ; 21-37
2012-06-01
17 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2012
|Rutting Performance on Different Asphalt Mixtures
Springer Verlag | 2018
|Characterization of rutting performance of warm additive modified asphalt mixtures
Online Contents | 2012
|Characterization of rutting performance of warm additive modified asphalt mixtures
British Library Online Contents | 2012
|