A platform for research: civil engineering, architecture and urbanism
AERCOARE: An overwater meteorological preprocessor for AERMOD
AERCOARE is a meteorological data preprocessor for the American Meteorological Society and U.S Environmental Protection Agency (EPA) Regulatory Model (AERMOD). AERCOARE includes algorithms developed during the Coupled-Ocean Atmosphere Response Experiment (COARE) to predict surface energy fluxes and stability from routine overwater measurements. The COARE algorithm is described and the implementation in AERCOARE is presented. Model performance for the combined AERCOARE-AERMOD modeling approach was evaluated against tracer measurements from four overwater field studies. Relatively better model performance was found when lateral turbulence measurements were available and when several key input variables to AERMOD were constrained. Namely, requiring the mixed layer height to be greater than 25 m and not allowing the Monin Obukhov length to be less than 5 m improved model performance in low wind speed stable conditions. Several options for low wind speed dispersion in AERMOD also affected the model performance results. Model performance for the combined AERCOARE-AERMOD modeling approach was found to be comparable to the current EPA regulatory Offshore Coastal Model (OCD) for the same tracer studies. AERCOARE-AERMOD predictions were also compared to simulations using the California Puff-Advection Model (CALPUFF) that also includes the COARE algorithm. Many model performance measures were found to be similar, but CALPUFF had significantly less scatter and better performance for one of the four field studies. For many offshore regulatory applications, the combined AERCOARE-AERMOD modeling approach was found to be a viable alternative to OCD the currently recommended model.
Implications: A new meteorological preprocessor called AERCOARE was developed for offshore source dispersion modeling using the U.S. Environmental Protection Agency (EPA) regulatory model AERMOD. The combined AERCOARE-AERMOD modeling approach allows stakeholders to use the same dispersion model for both offshore and onshore applications. This approach could replace current regulatory practices involving two completely different modeling systems. As improvements and features are added to the dispersion model component, AERMOD, such techniques can now also be applied to offshore air quality permitting.
AERCOARE: An overwater meteorological preprocessor for AERMOD
AERCOARE is a meteorological data preprocessor for the American Meteorological Society and U.S Environmental Protection Agency (EPA) Regulatory Model (AERMOD). AERCOARE includes algorithms developed during the Coupled-Ocean Atmosphere Response Experiment (COARE) to predict surface energy fluxes and stability from routine overwater measurements. The COARE algorithm is described and the implementation in AERCOARE is presented. Model performance for the combined AERCOARE-AERMOD modeling approach was evaluated against tracer measurements from four overwater field studies. Relatively better model performance was found when lateral turbulence measurements were available and when several key input variables to AERMOD were constrained. Namely, requiring the mixed layer height to be greater than 25 m and not allowing the Monin Obukhov length to be less than 5 m improved model performance in low wind speed stable conditions. Several options for low wind speed dispersion in AERMOD also affected the model performance results. Model performance for the combined AERCOARE-AERMOD modeling approach was found to be comparable to the current EPA regulatory Offshore Coastal Model (OCD) for the same tracer studies. AERCOARE-AERMOD predictions were also compared to simulations using the California Puff-Advection Model (CALPUFF) that also includes the COARE algorithm. Many model performance measures were found to be similar, but CALPUFF had significantly less scatter and better performance for one of the four field studies. For many offshore regulatory applications, the combined AERCOARE-AERMOD modeling approach was found to be a viable alternative to OCD the currently recommended model.
Implications: A new meteorological preprocessor called AERCOARE was developed for offshore source dispersion modeling using the U.S. Environmental Protection Agency (EPA) regulatory model AERMOD. The combined AERCOARE-AERMOD modeling approach allows stakeholders to use the same dispersion model for both offshore and onshore applications. This approach could replace current regulatory practices involving two completely different modeling systems. As improvements and features are added to the dispersion model component, AERMOD, such techniques can now also be applied to offshore air quality permitting.
AERCOARE: An overwater meteorological preprocessor for AERMOD
Wong, Herman (author) / Elleman, Rob (author) / Wolvovsky, Eric (author) / Richmond, Ken (author) / Paumier, James (author)
Journal of the Air & Waste Management Association ; 66 ; 1121-1140
2016-11-01
20 pages
Article (Journal)
Electronic Resource
English
Overwater vertical assembly technology of prestressed concrete overwater fixed platform
European Patent Office | 2015
|Overwater arresting cable clamp, overwater arresting cable system and method
European Patent Office | 2024
|