A platform for research: civil engineering, architecture and urbanism
Effects of waste high-density polyethylene (HDPE) on asphalt binder and airfield mixes
Flexible airport pavements may require polymer-modified asphalt binder for their asphalt concrete (AC) mixes to withstand heavy gear loading and slow traffic moving in taxiways and aprons. Waste plastics could be repurposed as a possible alternative to Styrene–butadiene-styrene (SBS) modifiers. In this study, the feasibility of using granulated recycled high-density polyethylene (HDPE) waste was evaluated as an asphalt binder modifier for airfield pavements. A base asphalt binder was modified with waste HDPE to obtain a Superpave performance grade (PG) of 70-22. Adding waste HDPE would increase binder’s stiffness and bond to aggregate, it slightly improved ductility and elasticity; but less than SBS polymer-modified binders. The AC mixes prepared with waste HDPE-modified binder showed less potential for rutting and cracking compared control AC mixes with PG 64-22. However, the rutting and cracking potential was higher when compared to their SBS-modified PG 70–22 counterparts. On the other hand, AC mixes containing waste HDPE-modified binder were less susceptible to moisture-induced damage. It appears that using waste HDPE-modified binder is feasible where improving adhesion and resistance to moisture-induced damage AC mixes are needed and embrittlement and elastic recovery are not critical, while meeting rutting and cracking potential regional thresholds.
Effects of waste high-density polyethylene (HDPE) on asphalt binder and airfield mixes
Flexible airport pavements may require polymer-modified asphalt binder for their asphalt concrete (AC) mixes to withstand heavy gear loading and slow traffic moving in taxiways and aprons. Waste plastics could be repurposed as a possible alternative to Styrene–butadiene-styrene (SBS) modifiers. In this study, the feasibility of using granulated recycled high-density polyethylene (HDPE) waste was evaluated as an asphalt binder modifier for airfield pavements. A base asphalt binder was modified with waste HDPE to obtain a Superpave performance grade (PG) of 70-22. Adding waste HDPE would increase binder’s stiffness and bond to aggregate, it slightly improved ductility and elasticity; but less than SBS polymer-modified binders. The AC mixes prepared with waste HDPE-modified binder showed less potential for rutting and cracking compared control AC mixes with PG 64-22. However, the rutting and cracking potential was higher when compared to their SBS-modified PG 70–22 counterparts. On the other hand, AC mixes containing waste HDPE-modified binder were less susceptible to moisture-induced damage. It appears that using waste HDPE-modified binder is feasible where improving adhesion and resistance to moisture-induced damage AC mixes are needed and embrittlement and elastic recovery are not critical, while meeting rutting and cracking potential regional thresholds.
Effects of waste high-density polyethylene (HDPE) on asphalt binder and airfield mixes
García Mainieri, Javier J. (author) / Al-Qadi, Imad L. (author) / Ghabchi, Rouzbeh (author)
2024-12-31
Article (Journal)
Electronic Resource
English
Asphalt Binder Properties and Airfield Pavement Cracking
ASCE | 2017
|Laboratory investigation of aged HDPE-modified asphalt mixes
Springer Verlag | 2019
|High-Temperature Indirect Tensile Test to Assess Asphalt Rutting Performance in Airfield Mixes
Springer Verlag | 2024
|Polyethylene, Non-High Density Polyethylene (HDPE)
British Library Online Contents | 2018