A platform for research: civil engineering, architecture and urbanism
PM2.5 Speciation Trends Network: Evaluation of Whole-System Uncertainties Using Data from Sites with Collocated Samplers
The objectives of this paper are to contrast the relative variability of replicate laboratory measurements of selected chemical components of fine particulate matter (PM) with total variability from collocated measurements and to compare the magnitudes of the uncertainties determined from collocated sampler data with those currently being provided to U.S. Environmental Protection Agency (EPA)’s Air Quality System (AQS) database by RTI International (RTI). Pointwise uncertainty values are needed for modeling and data analysis and should include all the random errors affecting each data point. Total uncertainty can be decomposed into two primary components: analytical measurement uncertainty and sampling uncertainty. Analytical measurement uncertainties are relatively easy to calculate from routine quality control (QC) data. Sampling uncertainties, on the other hand, are comparatively difficult to measure. In this paper, the authors describe data from collocated samplers to provide a snapshot of whole-system uncertainty for several important chemical species. The components of uncertainty were evaluated for key species from each of the analytical methods employed by the PM2.5 Speciation Trends Network (STN) program: gravimetry, ion chromatography (IC), X-ray fluorescence (XRF), and thermal-optical analysis for organic carbon and elemental carbon. The results show that the laboratory measurement uncertainties are typically very small compared with uncertainties calculated from the differences between samples collected from collocated samplers. These differences are attributable to the “field” components uncertainty, which may include contamination and/or losses during shipping, handling, and sampling, as well as other distortions of the concentration level due to flow and sample volume variations. Uncertainties calculated from the collocation results were found to be generally similar to the uncertainties currently being loaded into EPA’s AQS system, with some exceptions described below.
PM2.5 Speciation Trends Network: Evaluation of Whole-System Uncertainties Using Data from Sites with Collocated Samplers
The objectives of this paper are to contrast the relative variability of replicate laboratory measurements of selected chemical components of fine particulate matter (PM) with total variability from collocated measurements and to compare the magnitudes of the uncertainties determined from collocated sampler data with those currently being provided to U.S. Environmental Protection Agency (EPA)’s Air Quality System (AQS) database by RTI International (RTI). Pointwise uncertainty values are needed for modeling and data analysis and should include all the random errors affecting each data point. Total uncertainty can be decomposed into two primary components: analytical measurement uncertainty and sampling uncertainty. Analytical measurement uncertainties are relatively easy to calculate from routine quality control (QC) data. Sampling uncertainties, on the other hand, are comparatively difficult to measure. In this paper, the authors describe data from collocated samplers to provide a snapshot of whole-system uncertainty for several important chemical species. The components of uncertainty were evaluated for key species from each of the analytical methods employed by the PM2.5 Speciation Trends Network (STN) program: gravimetry, ion chromatography (IC), X-ray fluorescence (XRF), and thermal-optical analysis for organic carbon and elemental carbon. The results show that the laboratory measurement uncertainties are typically very small compared with uncertainties calculated from the differences between samples collected from collocated samplers. These differences are attributable to the “field” components uncertainty, which may include contamination and/or losses during shipping, handling, and sampling, as well as other distortions of the concentration level due to flow and sample volume variations. Uncertainties calculated from the collocation results were found to be generally similar to the uncertainties currently being loaded into EPA’s AQS system, with some exceptions described below.
PM2.5 Speciation Trends Network: Evaluation of Whole-System Uncertainties Using Data from Sites with Collocated Samplers
Flanagan, James B. (author) / Jayanty, R.K.M. (author) / Rickman, Jr., Edward E. (author) / Peterson, Max R. (author)
Journal of the Air & Waste Management Association ; 56 ; 492-499
2006-04-01
8 pages
Article (Journal)
Electronic Resource
Unknown
British Library Conference Proceedings | 2006
|PM2.5 episodes as observed in the speciation trends network
Elsevier | 2004
|A Field Study of Three Collocated Ambient PM~1~0 Samplers
British Library Online Contents | 1995
|Uncertainties in PM2.5 Gravimetric and Speciation Measurements and What We Can Learn from Them
Taylor & Francis Verlag | 2011
|