A platform for research: civil engineering, architecture and urbanism
Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads
In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.
Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads
In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.
Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads
Chen, Bin (author) / Li, Xiaozhang (author) / Xie, Xu (author) / Zhong, Zheng (author) / Lu, Pengzhen (author) / Gonzalez-Buelga, Alicia (author)
Shock and Vibration ; 2015 ; 1-13
2015
13 Seiten, 33 Quellen
Article (Journal)
English
Method for replacing suspenders of bowstring arch bridge
European Patent Office | 2015
|Wrapping and hanging device with arch bridge suspenders convenient to replace
European Patent Office | 2015
|