A platform for research: civil engineering, architecture and urbanism
Greenness, Genetic Predisposition, and Tinnitus
AbstractThis study aimed to investigate the association between residential greenness and tinnitus and the potential interaction between greenness and genetic predisposition to tinnitus. The normalized difference vegetation index (NDVI) is used to measure residential greenness. The tinnitus is defined based on self‐reported. In the cross‐sectional analyses, logistic regression models are used for the baseline sample of the United Kingdom Biobank cohort. In the secondary analysis, a Cox proportional hazard model is used for a subsample of participants who completed the tinnitus questionnaire at follow‐up. In the cross‐sectional analysis including 106471 participants, higher residential greenness is associated with lower odds of tinnitus for each interquartile range increase in continuous NDVI, with an adjusted odds ratio of 0.97 (95% confidence interval: 0.95 to 0.99) for tinnitus. A similar association is observed in the longitudinal analysis, with an adjusted hazard ratio of 0.92 (95% confidence interval: 0.86 to 0.98) for the association of NDVI increased per interquartile range with incident tinnitus. Moreover, there is a significant interaction between greenness and genetic predisposition to tinnitus (P < 0.05). This study suggested that residential greenness is negatively associated with tinnitus. Greenness and genetic predisposition to tinnitus are found to have a significant interaction.
Greenness, Genetic Predisposition, and Tinnitus
AbstractThis study aimed to investigate the association between residential greenness and tinnitus and the potential interaction between greenness and genetic predisposition to tinnitus. The normalized difference vegetation index (NDVI) is used to measure residential greenness. The tinnitus is defined based on self‐reported. In the cross‐sectional analyses, logistic regression models are used for the baseline sample of the United Kingdom Biobank cohort. In the secondary analysis, a Cox proportional hazard model is used for a subsample of participants who completed the tinnitus questionnaire at follow‐up. In the cross‐sectional analysis including 106471 participants, higher residential greenness is associated with lower odds of tinnitus for each interquartile range increase in continuous NDVI, with an adjusted odds ratio of 0.97 (95% confidence interval: 0.95 to 0.99) for tinnitus. A similar association is observed in the longitudinal analysis, with an adjusted hazard ratio of 0.92 (95% confidence interval: 0.86 to 0.98) for the association of NDVI increased per interquartile range with incident tinnitus. Moreover, there is a significant interaction between greenness and genetic predisposition to tinnitus (P < 0.05). This study suggested that residential greenness is negatively associated with tinnitus. Greenness and genetic predisposition to tinnitus are found to have a significant interaction.
Greenness, Genetic Predisposition, and Tinnitus
Advanced Science
Yuan, Lan‐Lai (author) / Li, Dan‐Kang (author) / Tian, Yao‐Hua (author) / Sun, Yu (author)
Advanced Science ; 11
2024-05-01
Article (Journal)
Electronic Resource
English
GENETIC TESTING FOR CANCER PREDISPOSITION
British Library Online Contents | 2001
|DataCite | 2003
|Residential greenness-related DNA methylation changes
Elsevier | 2021
|Obesity, physical activity & neighbourhood greenness
Online Contents | 2012