A platform for research: civil engineering, architecture and urbanism
10.1002/eqe.99.abs
The wall–frame systems have many known advantages, namely increase of the system's lateral strength and stiffness thereby allowing for a good tangential inter‐storey drift control, and the retention of a satisfactory energy dissipation capacity. However, rocking of the wall could occur as a result of uplifting wall base or concentrated plastic hinge deformations. Problems arising from this phenomenon have significant impact on the system behaviour and hence require extended study. This paper focuses on the wall‐rocking phenomenon due to the concentrated plastic hinge rotation at the wall base. To facilitate a comprehensive evaluation, a six‐storey three‐bay RC wall–frame structure is investigated with comparison to a bare ductile frame by means of earthquake simulation tests. The results revealed that, despite a superior performance over the ductile frame under low to moderate seismic actions, the wall–frame structure deteriorated more rapidly than the bare frame during advanced inelastic response. The increasingly significant rocking of the wall resulted in severe material damage at localized critical regions. Mitigating the wall rocking is seen to be a key to the further improvement of the system performance, and the extent to which this may be achieved by incorporating the three‐dimensional effects is explicitly illustrated by an analytical evaluation. Copyright © 2001 John Wiley & Sons, Ltd.
10.1002/eqe.99.abs
The wall–frame systems have many known advantages, namely increase of the system's lateral strength and stiffness thereby allowing for a good tangential inter‐storey drift control, and the retention of a satisfactory energy dissipation capacity. However, rocking of the wall could occur as a result of uplifting wall base or concentrated plastic hinge deformations. Problems arising from this phenomenon have significant impact on the system behaviour and hence require extended study. This paper focuses on the wall‐rocking phenomenon due to the concentrated plastic hinge rotation at the wall base. To facilitate a comprehensive evaluation, a six‐storey three‐bay RC wall–frame structure is investigated with comparison to a bare ductile frame by means of earthquake simulation tests. The results revealed that, despite a superior performance over the ductile frame under low to moderate seismic actions, the wall–frame structure deteriorated more rapidly than the bare frame during advanced inelastic response. The increasingly significant rocking of the wall resulted in severe material damage at localized critical regions. Mitigating the wall rocking is seen to be a key to the further improvement of the system performance, and the extent to which this may be achieved by incorporating the three‐dimensional effects is explicitly illustrated by an analytical evaluation. Copyright © 2001 John Wiley & Sons, Ltd.
Seismic behaviour of multistorey RC wall–frame system versus bare ductile frame system
Lu, Yong (author)
Earthquake Engineering & Structural Dynamics ; 31 ; 79-97
2002-01-01
19 pages
Article (Journal)
Electronic Resource
English
Seismic behaviour of multistorey RC wall-frame system versus bare ductile frame system
Online Contents | 2002
|Seismic reliability functions for multistorey frame and wall-frame systems
Online Contents | 2006
|Multistorey Wood Frame Construction
British Library Conference Proceedings | 1994
|