A platform for research: civil engineering, architecture and urbanism
Out‐of‐plane response of prefabricated concrete shear walls connected via grouted sleeves
The out‐of‐plane response of prefabricated (precast) concrete shear walls (PWs) are usually neglected in the structural designs. However, because of the relatively low stiffness and inevitable deformation of slabs, the out‐of‐plane behavior of PWs could influence the in‐plane response by causing premature failure or stability problems and affect the overall structural performance. This issue becomes significant when single‐row connections are employed because the neutral axial is shifted toward the compression side and the out‐of‐plane capacity is altered accordingly. In this study, PWs with grouted steel sleeve splices were tested under reciprocating cyclic loading. Both single‐row and paired connections were considered in test program. It was shown that all PWs suffered bending failure dominated by yielding of reinforcement at the bottom, and their load‐carrying capacity, stiffness degeneration trends were similar to the monolithic (cast‐in‐place) reference walls. Under the normalized compression of 0.12, the ductility of the prefabricated walls was 2.62 and 3.07, which was comparable to that of the reference cast‐in‐place wall (2.72). For the case that axial compression was not applied, the hysteresis curve of the PW with single‐row connection exhibited significant pinching. Nonetheless, the load‐carrying capacity of these walls did not exhibit significant drop at the end of the tests due to the lower axial compression, exhibiting high level of deformability. For both load cases, PWs with paired connection exhibited higher energy dissipation than the single‐row connected specimens.
Out‐of‐plane response of prefabricated concrete shear walls connected via grouted sleeves
The out‐of‐plane response of prefabricated (precast) concrete shear walls (PWs) are usually neglected in the structural designs. However, because of the relatively low stiffness and inevitable deformation of slabs, the out‐of‐plane behavior of PWs could influence the in‐plane response by causing premature failure or stability problems and affect the overall structural performance. This issue becomes significant when single‐row connections are employed because the neutral axial is shifted toward the compression side and the out‐of‐plane capacity is altered accordingly. In this study, PWs with grouted steel sleeve splices were tested under reciprocating cyclic loading. Both single‐row and paired connections were considered in test program. It was shown that all PWs suffered bending failure dominated by yielding of reinforcement at the bottom, and their load‐carrying capacity, stiffness degeneration trends were similar to the monolithic (cast‐in‐place) reference walls. Under the normalized compression of 0.12, the ductility of the prefabricated walls was 2.62 and 3.07, which was comparable to that of the reference cast‐in‐place wall (2.72). For the case that axial compression was not applied, the hysteresis curve of the PW with single‐row connection exhibited significant pinching. Nonetheless, the load‐carrying capacity of these walls did not exhibit significant drop at the end of the tests due to the lower axial compression, exhibiting high level of deformability. For both load cases, PWs with paired connection exhibited higher energy dissipation than the single‐row connected specimens.
Out‐of‐plane response of prefabricated concrete shear walls connected via grouted sleeves
Xue, Weichen (author) / Huang, Qian (author) / Xu, Zhijun (author) / Yu, Jiayin (author) / Li, Ya (author)
Structural Concrete ; 25 ; 3570-3582
2024-10-01
13 pages
Article (Journal)
Electronic Resource
English
European Patent Office | 2023
|In-Plane Behavior of Partially Grouted Reinforced Concrete Masonry Shear Walls
British Library Online Contents | 2010
|