A platform for research: civil engineering, architecture and urbanism
Parameter Optimization of Activated Carbon Production from Agave sisalana and Punica granatum Peel: Adsorbents for C.I. Reactive Orange 4 Removal from Aqueous Solution
In the present study, activated carbons were prepared from sisal fiber (Agave sisalana sp.) and pomegranate peel (Punica granatum sp.) using phosphoric acid as the activating agent. Both sisal fiber activated carbon (SFAC) and pomegranate peel activated carbon (PPAC) were characterized using methylene blue number, iodine number, BET surface area, SEM, and FTIR. The BET surface area of the SFAC and PPAC were 885 and 686 m2/g, respectively. The adsorption studies using C.I. Reactive Orange 4 dye on the SFAC and PPAC were carried out. The effects of time, initial adsorbate concentration, pH, and temperature on the adsorption were studied. The isotherm studies were carried and it was found that the Langmuir and Freundlich isotherms fit well for the adsorption of RO 4 on SFAC, while adsorption of RO 4 on PPAC is better represented by the Langmuir and Temkin isotherms. Adsorption kinetics of adsorption was determined using pseudo first order, pseudo second order, Elovich and intraparticle diffusion models and it was found that the adsorption process follows pseudo second order model. Thermodynamics parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined by using van't Hoff equation. The positive ΔH value indicates that RO 4 dye adsorption on SFAC and PPAC is endothermic in nature.
Parameter Optimization of Activated Carbon Production from Agave sisalana and Punica granatum Peel: Adsorbents for C.I. Reactive Orange 4 Removal from Aqueous Solution
In the present study, activated carbons were prepared from sisal fiber (Agave sisalana sp.) and pomegranate peel (Punica granatum sp.) using phosphoric acid as the activating agent. Both sisal fiber activated carbon (SFAC) and pomegranate peel activated carbon (PPAC) were characterized using methylene blue number, iodine number, BET surface area, SEM, and FTIR. The BET surface area of the SFAC and PPAC were 885 and 686 m2/g, respectively. The adsorption studies using C.I. Reactive Orange 4 dye on the SFAC and PPAC were carried out. The effects of time, initial adsorbate concentration, pH, and temperature on the adsorption were studied. The isotherm studies were carried and it was found that the Langmuir and Freundlich isotherms fit well for the adsorption of RO 4 on SFAC, while adsorption of RO 4 on PPAC is better represented by the Langmuir and Temkin isotherms. Adsorption kinetics of adsorption was determined using pseudo first order, pseudo second order, Elovich and intraparticle diffusion models and it was found that the adsorption process follows pseudo second order model. Thermodynamics parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined by using van't Hoff equation. The positive ΔH value indicates that RO 4 dye adsorption on SFAC and PPAC is endothermic in nature.
Parameter Optimization of Activated Carbon Production from Agave sisalana and Punica granatum Peel: Adsorbents for C.I. Reactive Orange 4 Removal from Aqueous Solution
Senthilkumar, Thambiannan (author) / Raghuraman, Rajendran (author) / Miranda, Lima Rose (author)
CLEAN – Soil, Air, Water ; 41 ; 797-807
2013-08-01
11 pages
Article (Journal)
Electronic Resource
English
European Patent Office | 2015
|