Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Sustainable Business Innovation of Photovoltaic Water Pumping Systems
The development of renewable energy technology provides an effective approach to replace fossil fuels for greenhouse gas (GHG) emission. Technological innovation and transfer are the main driving forces in promoting renewable energy usage, because of the better efficiency and economic payback under an emission reduction target. With three of the mechanisms of emission trading originating from the Kyoto Protocol, the most wildly accepted and important mechanism between developed and developing countries is the Clean Development Mechanism (CDM). The CDM has been implemented contributing the most of the trading carbon credits. In this study, by extracting and building an exclusive database of issued Chinese CDM projects, a modified multivariable logistic regression model for technology transfer’s correlation test with 11 extended indicators was investigated for the first time. Renewable energy projects were analyzed with certified emission reduction (CER) sizes, economic development, and geographic scopes.In addition, technological innovation should also be enhanced with new business developments to demonstrate and scale up technologies for better economic and environmental performances. This doctoral thesis studied photovoltaic water pumping (PVWP) technology as a technological solution for integration with the new business model for development and co-benefits. The integration of PVWP with water saving irrigation techniques and sustainable management of water resources, leads to technical innovations, economic benefits, and climate benefits. Field measurements at a pilot PVWP system in Inner Mongolia were conducted with detailed economic performance analyses. Different scenarios for PVWP systems considering variant market incentives were proposed with internal rate of return (IRR), and discounted payback period analyses to develop a new business model approach for implementing PVWP systems with multi-value propositions. The environmental externalities were successfully addressed by evaluating the CO2 emission ...
Sustainable Business Innovation of Photovoltaic Water Pumping Systems
The development of renewable energy technology provides an effective approach to replace fossil fuels for greenhouse gas (GHG) emission. Technological innovation and transfer are the main driving forces in promoting renewable energy usage, because of the better efficiency and economic payback under an emission reduction target. With three of the mechanisms of emission trading originating from the Kyoto Protocol, the most wildly accepted and important mechanism between developed and developing countries is the Clean Development Mechanism (CDM). The CDM has been implemented contributing the most of the trading carbon credits. In this study, by extracting and building an exclusive database of issued Chinese CDM projects, a modified multivariable logistic regression model for technology transfer’s correlation test with 11 extended indicators was investigated for the first time. Renewable energy projects were analyzed with certified emission reduction (CER) sizes, economic development, and geographic scopes.In addition, technological innovation should also be enhanced with new business developments to demonstrate and scale up technologies for better economic and environmental performances. This doctoral thesis studied photovoltaic water pumping (PVWP) technology as a technological solution for integration with the new business model for development and co-benefits. The integration of PVWP with water saving irrigation techniques and sustainable management of water resources, leads to technical innovations, economic benefits, and climate benefits. Field measurements at a pilot PVWP system in Inner Mongolia were conducted with detailed economic performance analyses. Different scenarios for PVWP systems considering variant market incentives were proposed with internal rate of return (IRR), and discounted payback period analyses to develop a new business model approach for implementing PVWP systems with multi-value propositions. The environmental externalities were successfully addressed by evaluating the CO2 emission ...
Sustainable Business Innovation of Photovoltaic Water Pumping Systems
Zhang, Chi (Autor:in)
01.01.2018
Hochschulschrift
Elektronische Ressource
Englisch
DDC:
690
Tema Archiv | 1989
|Photovoltaic water pumping for Bolivia
Tema Archiv | 1987
|Realistic indoor testing of photovoltaic water pumping systems
Tema Archiv | 1987
|