Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Low-temperature preparation method of wave-absorbing polymer converted silicon-carbon-nitrogen ceramic
The invention relates to a low-temperature preparation method of wave-absorbing polymer converted silicon-carbon-nitrogen ceramic. The cracking of the silicon-carbon-nitrogen ceramic and the in-situ synthesis of carbon nanotubes are completed by adopting a nickel bis-salicylaldehyde ethylenediamine modified silicon-carbon-nitrogen precursor, wherein the nickel ions are uniformly released in the polysilazane cracking process, so that the in-situ synthesized carbon nanotubes are uniformly distributed in the silicon-carbon-nitrogen ceramic, and the problems that the carbon nanotubes are easy to agglomerate, non-uniform in dispersion and the like are solved. The composite structure of the high-conductivity carbon nano tube and the wave-transparent silicon carbon nitrogen matrix increases the electromagnetic wave loss path. By controlling the content and cracking temperature of the bis-salicylaldehyde ethylenediamine nickel, the microstructure and content of the carbon nanotubes in pores ofthe silicon-carbon-nitrogen ceramic are optimized, the prepared material is adjustable in dielectric property and excellent in wave-absorbing property, the frequency band width with reflection loss smaller than -10 dB is 4.2 GHz, and the lowest reflection coefficient reaches -18.4 dB. The material is a wave-absorbing material mainly based on polarization loss, and has potential to be used as a matrix material of a high-temperature bearing wave-absorbing integrated composite material.
本发明涉及一种吸波型聚合物转化硅碳氮陶瓷的低温制备方法,采用双水杨醛缩乙二胺合镍改性硅碳氮前驱体完成硅碳氮陶瓷的裂解与碳纳米管的原位自生。聚硅氮烷裂解过程中镍离子的均匀释放使得原位自生碳纳米管在硅碳氮陶瓷中均匀分布,解决了碳纳米管易团聚和分散不均匀等问题。高电导率的碳纳米管与透波硅碳氮基体的复合结构,增加了电磁波损耗途径。通过控制双水杨醛缩乙二胺合镍的含量和裂解温度,优化碳纳米管在硅碳氮陶瓷孔隙中的微结构和含量,制备材料介电性能可调,吸波性能优异,反射损耗小于‑10dB的频带宽度为4.2GHz,最低反射系数达到‑18.4dB。该材料是一种以极化损耗为主的吸波材料,有潜力作为高温承载吸波一体化复合材料的基体材料。
Low-temperature preparation method of wave-absorbing polymer converted silicon-carbon-nitrogen ceramic
The invention relates to a low-temperature preparation method of wave-absorbing polymer converted silicon-carbon-nitrogen ceramic. The cracking of the silicon-carbon-nitrogen ceramic and the in-situ synthesis of carbon nanotubes are completed by adopting a nickel bis-salicylaldehyde ethylenediamine modified silicon-carbon-nitrogen precursor, wherein the nickel ions are uniformly released in the polysilazane cracking process, so that the in-situ synthesized carbon nanotubes are uniformly distributed in the silicon-carbon-nitrogen ceramic, and the problems that the carbon nanotubes are easy to agglomerate, non-uniform in dispersion and the like are solved. The composite structure of the high-conductivity carbon nano tube and the wave-transparent silicon carbon nitrogen matrix increases the electromagnetic wave loss path. By controlling the content and cracking temperature of the bis-salicylaldehyde ethylenediamine nickel, the microstructure and content of the carbon nanotubes in pores ofthe silicon-carbon-nitrogen ceramic are optimized, the prepared material is adjustable in dielectric property and excellent in wave-absorbing property, the frequency band width with reflection loss smaller than -10 dB is 4.2 GHz, and the lowest reflection coefficient reaches -18.4 dB. The material is a wave-absorbing material mainly based on polarization loss, and has potential to be used as a matrix material of a high-temperature bearing wave-absorbing integrated composite material.
本发明涉及一种吸波型聚合物转化硅碳氮陶瓷的低温制备方法,采用双水杨醛缩乙二胺合镍改性硅碳氮前驱体完成硅碳氮陶瓷的裂解与碳纳米管的原位自生。聚硅氮烷裂解过程中镍离子的均匀释放使得原位自生碳纳米管在硅碳氮陶瓷中均匀分布,解决了碳纳米管易团聚和分散不均匀等问题。高电导率的碳纳米管与透波硅碳氮基体的复合结构,增加了电磁波损耗途径。通过控制双水杨醛缩乙二胺合镍的含量和裂解温度,优化碳纳米管在硅碳氮陶瓷孔隙中的微结构和含量,制备材料介电性能可调,吸波性能优异,反射损耗小于‑10dB的频带宽度为4.2GHz,最低反射系数达到‑18.4dB。该材料是一种以极化损耗为主的吸波材料,有潜力作为高温承载吸波一体化复合材料的基体材料。
Low-temperature preparation method of wave-absorbing polymer converted silicon-carbon-nitrogen ceramic
一种吸波型聚合物转化硅碳氮陶瓷的低温制备方法
XUE JIMEI (Autor:in) / REN FANGYUAN (Autor:in) / CHENG LAIFEI (Autor:in)
11.09.2020
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
/
C01B
NON-METALLIC ELEMENTS
,
Nichtmetallische Elemente
/
C08G
MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
,
Makromolekulare Verbindungen, anders erhalten als durch Reaktionen, an denen nur ungesättigte Kohlenstoff-Kohlenstoff-Bindungen beteiligt sind
/
C09K
Materialien für Anwendungen, soweit nicht anderweitig vorgesehen
,
MATERIALS FOR APPLICATIONS NOT OTHERWISE PROVIDED FOR
Europäisches Patentamt | 2022
|Europäisches Patentamt | 2023
|Precursor converted silicon carbide ceramic and preparation method thereof
Europäisches Patentamt | 2022
|Method for preparing polymer converted ceramic aerogel
Europäisches Patentamt | 2022
|Europäisches Patentamt | 2022
|