Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
MACHINE LEARNING DEVICE, MACHINE LEARNING METHOD, AND WELL ABNORMALITY DETERMINATION DEVICE
To provide a machine learning device, a machine learning method, and a well abnormality determination device to be used for diagnosis of a state of deterioration in a well conducted in such a way that results are not user dependent.SOLUTION: A machine learning device 1 is provided, comprising an image acquisition unity 4 for acquiring images 3 of the inside of a well, an evaluation value acquisition unit 6 for acquiring evaluation values 5 regarding presence/absence of an abnormality in the images 3 of the inside of the well, and a learning unit 7 configured to build a learning model for determining the presence or absence of an abnormality inside the well by performing supervised learning using pairs of the images 3 of the inside of the well acquired by the image acquisition unit 4 and the evaluation values 5 acquired by the evaluation value acquisition unit 6 as teacher data.SELECTED DRAWING: Figure 1
【課題】ユーザにより差異が生じないような井戸内の劣化状況等の診断に用いるための機械学習装置、機械学習方法および井戸の異常有無判定装置を提供する。【解決手段】機械学習装置1が、井戸内の画像3を取得する画像取得部4と、井戸内の画像3の異常の有無に関する評価値5を取得する評価値取得部6と、画像取得部4が取得した井戸内の画像3および評価値取得部6が取得した評価値5の組を教師データとして教師あり学習を行うことにより、井戸内の異常の有無の判定を行うための学習モデルを構築する学習部7と、を備える。【選択図】図1
MACHINE LEARNING DEVICE, MACHINE LEARNING METHOD, AND WELL ABNORMALITY DETERMINATION DEVICE
To provide a machine learning device, a machine learning method, and a well abnormality determination device to be used for diagnosis of a state of deterioration in a well conducted in such a way that results are not user dependent.SOLUTION: A machine learning device 1 is provided, comprising an image acquisition unity 4 for acquiring images 3 of the inside of a well, an evaluation value acquisition unit 6 for acquiring evaluation values 5 regarding presence/absence of an abnormality in the images 3 of the inside of the well, and a learning unit 7 configured to build a learning model for determining the presence or absence of an abnormality inside the well by performing supervised learning using pairs of the images 3 of the inside of the well acquired by the image acquisition unit 4 and the evaluation values 5 acquired by the evaluation value acquisition unit 6 as teacher data.SELECTED DRAWING: Figure 1
【課題】ユーザにより差異が生じないような井戸内の劣化状況等の診断に用いるための機械学習装置、機械学習方法および井戸の異常有無判定装置を提供する。【解決手段】機械学習装置1が、井戸内の画像3を取得する画像取得部4と、井戸内の画像3の異常の有無に関する評価値5を取得する評価値取得部6と、画像取得部4が取得した井戸内の画像3および評価値取得部6が取得した評価値5の組を教師データとして教師あり学習を行うことにより、井戸内の異常の有無の判定を行うための学習モデルを構築する学習部7と、を備える。【選択図】図1
MACHINE LEARNING DEVICE, MACHINE LEARNING METHOD, AND WELL ABNORMALITY DETERMINATION DEVICE
機械学習装置、機械学習方法および井戸の異常有無判定装置
TAKAHASHI NAOTO (Autor:in)
13.06.2024
Patent
Elektronische Ressource
Japanisch
IPC:
G06T
Bilddatenverarbeitung oder Bilddatenerzeugung allgemein
,
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
/
E03B
Anlagen oder Verfahren zum Gewinnen, Sammeln oder Verteilen von Wasser
,
INSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
/
E21B
EARTH OR ROCK DRILLING
,
Erd- oder Gesteinsbohren
/
G06V
/
H04N
PICTORIAL COMMUNICATION, e.g. TELEVISION
,
Bildübertragung, z.B. Fernsehen
MACHINE LEARNING DEVICE AND ABNORMALITY IDENTIFICATION DEVICE
Europäisches Patentamt | 2022
|WORK MACHINE ABNORMALITY DETERMINATION SYSTEM AND WORK MACHINE ABNORMALITY DETERMINATION METHOD
Europäisches Patentamt | 2022
|WORK MACHINE ABNORMALITY DETERMINATION SYSTEM AND WORK MACHINE ABNORMALITY DETERMINATION METHOD
Europäisches Patentamt | 2024
|Europäisches Patentamt | 2022
|Europäisches Patentamt | 2023
|