A platform for research: civil engineering, architecture and urbanism
Etch Characteristics and Morphology of Al2O3/TiO2 Stacks for Silicon Surface Passivation
Chemical processes are very important for the development of high-efficiency crystalline solar cells, mainly for surface texturing to improve light absorption and cleaning processes to reduce surface recombination. Recently, research has been focusing on the impact of chemical polishing on the performance of a passivated emitter and rear cells (PERC), with particular emphasis on the dielectric passivation layers on the front side. This study examined the influence of etching on the passivation of Al2O3/TiO2 stacks, where the films may each be deposited using a range of deposition and post-annealing parameters. Most TiO2 films deposited at 300 °C were resistant to chemical etching, and higher temperature deposition and annealing produced more chemical-resistant films. TiO2 films deposited at 100 °C were etched slightly by SC1 and SC2 solutions at room temperature, whereas they were etched at a relatively high rate in an HF solution, even when capped with a thick TiO2 layer (up to 50 nm in thickness); blistering occurred in 20-nm-thick Al2O3 films. In contrast to the as-deposited films, the annealed films showed a lower level of passivation as 1% HF etching proceeded. The implied open circuit voltage of the samples annealed at 300 °C after HF etching decreased more than those annealed at 400 °C. The dark area in the photoluminescence images was not resistant to the HF solution and showed more etch pits. The etching strategies developed in this study are expected to help setup integration processes and increase the applicability of this stack to solar cells.
Etch Characteristics and Morphology of Al2O3/TiO2 Stacks for Silicon Surface Passivation
Chemical processes are very important for the development of high-efficiency crystalline solar cells, mainly for surface texturing to improve light absorption and cleaning processes to reduce surface recombination. Recently, research has been focusing on the impact of chemical polishing on the performance of a passivated emitter and rear cells (PERC), with particular emphasis on the dielectric passivation layers on the front side. This study examined the influence of etching on the passivation of Al2O3/TiO2 stacks, where the films may each be deposited using a range of deposition and post-annealing parameters. Most TiO2 films deposited at 300 °C were resistant to chemical etching, and higher temperature deposition and annealing produced more chemical-resistant films. TiO2 films deposited at 100 °C were etched slightly by SC1 and SC2 solutions at room temperature, whereas they were etched at a relatively high rate in an HF solution, even when capped with a thick TiO2 layer (up to 50 nm in thickness); blistering occurred in 20-nm-thick Al2O3 films. In contrast to the as-deposited films, the annealed films showed a lower level of passivation as 1% HF etching proceeded. The implied open circuit voltage of the samples annealed at 300 °C after HF etching decreased more than those annealed at 400 °C. The dark area in the photoluminescence images was not resistant to the HF solution and showed more etch pits. The etching strategies developed in this study are expected to help setup integration processes and increase the applicability of this stack to solar cells.
Etch Characteristics and Morphology of Al2O3/TiO2 Stacks for Silicon Surface Passivation
Dongchul Suh (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hydrogen induced interface passivation in atomic layer deposited Al2O3 films and Al2O3/SiO2 stacks
British Library Online Contents | 2018
|Hydrogen induced interface passivation in atomic layer deposited Al2O3 films and Al2O3/SiO2 stacks
British Library Online Contents | 2018
|Monocrystalline silicon surface passivation by Al2O3/porous silicon combined treatment
British Library Online Contents | 2013
|Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3
British Library Online Contents | 2015
|British Library Online Contents | 2018
|