A platform for research: civil engineering, architecture and urbanism
Integration of a MSF Desalination System with a HDH System for Brine Recovery
A hybrid Multi-Stage Flash–Humidification Dehumidification (MSF-HDH) desalination system is investigated for energy recovery from an MSF system. The hybrid MSF-HDH system increases total productivity and performance ratio and reduces brine rejection. Hot condensed steam that leaves the MSF brine heater is used to warm the rejected pretreated brine from MSF to a higher temperature suitable for HDH system operation (about 60 °C). This allows us to increase the product (desalinated water) without additional “external” energy input to the hybrid system. Four different layouts of the integrated MSF-HDH system are presented and compared. The results show that an HDH system can utilize over 66% of an existing MSF brine blowdown, while the hybrid system can achieve a gained output ratio—GOR, water recovery ratio—RR, productivity and freshwater cost of 8.73, 44.86%, 30,549 m3/day and 1.068 $/m3 of freshwater, respectively. Utilizing 66.96% of MSF brine blowdown by the HDH system leads to a daily HDH productivity of about 670 m3 of drinking water, which is enough to support 134,000 persons considering a daily consumption of 5 L of drinking water per person.
Integration of a MSF Desalination System with a HDH System for Brine Recovery
A hybrid Multi-Stage Flash–Humidification Dehumidification (MSF-HDH) desalination system is investigated for energy recovery from an MSF system. The hybrid MSF-HDH system increases total productivity and performance ratio and reduces brine rejection. Hot condensed steam that leaves the MSF brine heater is used to warm the rejected pretreated brine from MSF to a higher temperature suitable for HDH system operation (about 60 °C). This allows us to increase the product (desalinated water) without additional “external” energy input to the hybrid system. Four different layouts of the integrated MSF-HDH system are presented and compared. The results show that an HDH system can utilize over 66% of an existing MSF brine blowdown, while the hybrid system can achieve a gained output ratio—GOR, water recovery ratio—RR, productivity and freshwater cost of 8.73, 44.86%, 30,549 m3/day and 1.068 $/m3 of freshwater, respectively. Utilizing 66.96% of MSF brine blowdown by the HDH system leads to a daily HDH productivity of about 670 m3 of drinking water, which is enough to support 134,000 persons considering a daily consumption of 5 L of drinking water per person.
Integration of a MSF Desalination System with a HDH System for Brine Recovery
Dahiru U. Lawal (author) / Mohamed A. Antar (author) / Atia E. Khalifa (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Foss reservoir desalination plant brine recovery
Tema Archive | 1975
|DESIGN OF SEAWATER DESALINATION BRINE DIFFUSERS
TIBKAT | 2020
|Brine Disposal from Inland Desalination Plants
Taylor & Francis Verlag | 2002
|British Library Conference Proceedings | 2011
|