A platform for research: civil engineering, architecture and urbanism
Resources recovery—Separation and recovery of copper from desalination brine through Lewatit TP 207 resin
Because of freshwater scarcity caused by extreme climate change, desalination technique has been developed in many countries to acquire freshwater. However, desalination plants worldwide not only produce freshwater but also generate large amounts of high salinity wastewater (brine). Brine discharge will decrease the concentration of dissolved oxygen in seawater and affect the organism's habitat. The only merit of the brine is that the concentrations of valuable metals in brine are higher than in seawater. Therefore, it is an opportunity to recover metals from brine and solve the environmental problem simultaneously. This study then aims to recover copper from brine through the ion exchange method. The research could be divided into three parts. To begin with, the saturated adsorption capacity of copper through Lewatit TP 207 resin was 30.58 mg/g, and the adsorption behavior was in accord with the Langmuir model. The optimal parameters of copper adsorption through the resin would be surveyed in the second part. The results demonstrated that 16.1 mg/l of copper could be adsorbed from brine under contacting period of 16 min, pH 14, L/S ratio of 2000, and temperature at 328 K. In addition, the thermodynamic parameters would also be explored to realize how the adsorption reaction was processed. Lastly, different agents and desorption parameters would be investigated to separate the copper from the resin. The copper compound and the resin could be obtained and regenerated after desorption. Reusing desalination brine could reduce its amount of discharge and increase its value. A 16.1 mg/l of copper could be adsorbed from desalination brine through the Lewatit TP 207 system. The optimal parameters are contacting period of 16 min, pH 14, L/S ratio of 2000, and temperature at 328 K. After adsorbing, copper could be desorbed by HCl, and copper chloride could be acquired by vacuum drying the solutions. This is a method with the goal of laboratory‐safe, low‐cost, and high‐energy efficiency.
Resources recovery—Separation and recovery of copper from desalination brine through Lewatit TP 207 resin
Because of freshwater scarcity caused by extreme climate change, desalination technique has been developed in many countries to acquire freshwater. However, desalination plants worldwide not only produce freshwater but also generate large amounts of high salinity wastewater (brine). Brine discharge will decrease the concentration of dissolved oxygen in seawater and affect the organism's habitat. The only merit of the brine is that the concentrations of valuable metals in brine are higher than in seawater. Therefore, it is an opportunity to recover metals from brine and solve the environmental problem simultaneously. This study then aims to recover copper from brine through the ion exchange method. The research could be divided into three parts. To begin with, the saturated adsorption capacity of copper through Lewatit TP 207 resin was 30.58 mg/g, and the adsorption behavior was in accord with the Langmuir model. The optimal parameters of copper adsorption through the resin would be surveyed in the second part. The results demonstrated that 16.1 mg/l of copper could be adsorbed from brine under contacting period of 16 min, pH 14, L/S ratio of 2000, and temperature at 328 K. In addition, the thermodynamic parameters would also be explored to realize how the adsorption reaction was processed. Lastly, different agents and desorption parameters would be investigated to separate the copper from the resin. The copper compound and the resin could be obtained and regenerated after desorption. Reusing desalination brine could reduce its amount of discharge and increase its value. A 16.1 mg/l of copper could be adsorbed from desalination brine through the Lewatit TP 207 system. The optimal parameters are contacting period of 16 min, pH 14, L/S ratio of 2000, and temperature at 328 K. After adsorbing, copper could be desorbed by HCl, and copper chloride could be acquired by vacuum drying the solutions. This is a method with the goal of laboratory‐safe, low‐cost, and high‐energy efficiency.
Resources recovery—Separation and recovery of copper from desalination brine through Lewatit TP 207 resin
Lee, Cheng‐Han (author) / Chen, Wei‐Sheng (author)
2022-10-01
13 pages
Article (Journal)
Electronic Resource
English
Foss reservoir desalination plant brine recovery
Tema Archive | 1975
|British Library Conference Proceedings | 2011
|Recovery of Alkaline Earth Metals from Desalination Brine for Carbon Capture and Sodium Removal
DOAJ | 2021
|Integration of a MSF Desalination System with a HDH System for Brine Recovery
DOAJ | 2021
|