A platform for research: civil engineering, architecture and urbanism
NANOCARBON COMPOSITE INFRARED RAY RADIATION CERAMIC
To provide a nanocarbon composite infrared ray radiation ceramic having high emissivity of infrared ray over a broad wavelength region, even when fine pores or voids spotted on a surface are filled or covered in order to improve water repellency or surface hardness of a surface of an infrared emitter.SOLUTION: A filling layer and/or a coating layer is formed on the a part or the entirety of a surface so as to cover the pores or voids scattered on the surface of the infrared radiation ceramics in which nanocarbon material is uniformly dispersed in the ceramic. The filling layer and/or the coating layer are mainly made of silicone or fluorine based water repellent resin. The value of the emissivity of infrared rays of 6000 to 400 cm-1 at 25°C measured by the JFCC method is 80% or larger.SELECTED DRAWING: Figure 5
【課題】赤外線放射体の表面の撥水性能や表面硬度を向上させるために、当該表面に点在する微細な気孔部又は空隙部を充填又は被覆した場合でも、広い波数域に亘って赤外線の放射率の高いナノカーボン複合赤外線放射セラミックスを提供する。【解決手段】セラミックス中にナノカーボン材料を均一に分散した赤外線放射セラミックスの表面に点在する気孔部又は空隙部を覆うように、当該表面の一部又は全体に充填層及び/又は被覆層が形成されている。この充填層及び/又は被覆層は、主としてシリコーン系又はフッ素系の撥水性樹脂からなる。また、JFCC法で測定した25℃における波数域6000〜400cm−1の赤外線の放射率の値が80%以上である。【選択図】図5
NANOCARBON COMPOSITE INFRARED RAY RADIATION CERAMIC
To provide a nanocarbon composite infrared ray radiation ceramic having high emissivity of infrared ray over a broad wavelength region, even when fine pores or voids spotted on a surface are filled or covered in order to improve water repellency or surface hardness of a surface of an infrared emitter.SOLUTION: A filling layer and/or a coating layer is formed on the a part or the entirety of a surface so as to cover the pores or voids scattered on the surface of the infrared radiation ceramics in which nanocarbon material is uniformly dispersed in the ceramic. The filling layer and/or the coating layer are mainly made of silicone or fluorine based water repellent resin. The value of the emissivity of infrared rays of 6000 to 400 cm-1 at 25°C measured by the JFCC method is 80% or larger.SELECTED DRAWING: Figure 5
【課題】赤外線放射体の表面の撥水性能や表面硬度を向上させるために、当該表面に点在する微細な気孔部又は空隙部を充填又は被覆した場合でも、広い波数域に亘って赤外線の放射率の高いナノカーボン複合赤外線放射セラミックスを提供する。【解決手段】セラミックス中にナノカーボン材料を均一に分散した赤外線放射セラミックスの表面に点在する気孔部又は空隙部を覆うように、当該表面の一部又は全体に充填層及び/又は被覆層が形成されている。この充填層及び/又は被覆層は、主としてシリコーン系又はフッ素系の撥水性樹脂からなる。また、JFCC法で測定した25℃における波数域6000〜400cm−1の赤外線の放射率の値が80%以上である。【選択図】図5
NANOCARBON COMPOSITE INFRARED RAY RADIATION CERAMIC
ナノカーボン複合赤外線放射セラミックス
SAKATA ICHIRO (author) / FURUZUKI FUMIJI (author) / SASAKI HAJIME (author) / ONODA SHIGERU (author) / KOMATSUYAMA SAORI (author) / UCHIDA TAKAMITSU (author) / TAKAHASHI NAOYA (author)
2021-10-07
Patent
Electronic Resource
Japanese
IPC:
C04B
Kalk
,
LIME
/
B32B
LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
,
Schichtkörper, d.h. aus Ebenen oder gewölbten Schichten, z.B. mit zell- oder wabenförmiger Form, aufgebaute Erzeugnisse
/
H05B
ELECTRIC HEATING
,
Elektrische Heizung
- Manufacturing method of plasma resistant and conductive ceramic-nanocarbon composite
European Patent Office | 2019
- Plasma resistant and conductive ceramic-nanocarbon composite and manufacturing method of the same
European Patent Office | 2018
|NANOCARBON MATERIAL AND APPLICATIONS OF NANOCARBON MATERIAL
European Patent Office | 2022
|Nanocarbon Film as a Percolation Network for Nanocarbon/Polymer Composites
British Library Online Contents | 2009
|