Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Method for connecting SiC ceramic material by using calcium oxide/aluminum oxide/silicon dioxide/lithium oxide glass solder
The invention discloses a method for connecting SiC ceramic materials by using calcium oxide/aluminum oxide/silicon dioxide/lithium oxide glass solder, and relates to a method for connecting SiC ceramic materials by using glass solder. The invention aims to solve the technical problems that the connection of SiC ceramics needs high-temperature and high-pressure conditions under the current nuclear reactor service condition, and the joint performance and the radiation resistance are poor. According to the method, the mechanical property of the joint can be improved, meanwhile, the reliability of the SiC ceramic welding structural part in the nuclear irradiation service environment can be improved, and the welding structure is expected to be used in the nuclear power field. The glass solder connecting method has the advantages that the glass solder connecting method is easy to use, connection can be achieved under the conditions of no pressure, atmosphere and relatively lower connecting temperature of 1200-1280 DEG C, the solder can form a glass ceramic welding seam with high crystallization rate in situ in the welding heat cycle, and the mechanical property and the radiation resistance of a connector can be remarkably improved.
一种使用氧化钙/氧化铝/二氧化硅/氧化锂玻璃焊料连接SiC陶瓷材料的方法,涉及一种使用玻璃焊料连接SiC陶瓷材料的方法。本发明是要解决目前核反应堆服役条件下SiC陶瓷的连接需要高温高压条件,接头性能以及抗辐照性能差的技术问题。本发明有利于提高接头的力学性能,同时能提高SiC陶瓷焊接结构件在核辐照服役环境下的可靠性,使得该焊接结构有望利用在核电领域。本发明的玻璃焊料连接方法具有使用简单,可以在无压、气氛和相对更低的连接温度1200℃~1280℃下实现连接,在焊接热循环中,焊料能原位形成一个结晶率高的玻璃陶瓷焊缝,能显著提高接头的力学性能和抗辐照性能。
Method for connecting SiC ceramic material by using calcium oxide/aluminum oxide/silicon dioxide/lithium oxide glass solder
The invention discloses a method for connecting SiC ceramic materials by using calcium oxide/aluminum oxide/silicon dioxide/lithium oxide glass solder, and relates to a method for connecting SiC ceramic materials by using glass solder. The invention aims to solve the technical problems that the connection of SiC ceramics needs high-temperature and high-pressure conditions under the current nuclear reactor service condition, and the joint performance and the radiation resistance are poor. According to the method, the mechanical property of the joint can be improved, meanwhile, the reliability of the SiC ceramic welding structural part in the nuclear irradiation service environment can be improved, and the welding structure is expected to be used in the nuclear power field. The glass solder connecting method has the advantages that the glass solder connecting method is easy to use, connection can be achieved under the conditions of no pressure, atmosphere and relatively lower connecting temperature of 1200-1280 DEG C, the solder can form a glass ceramic welding seam with high crystallization rate in situ in the welding heat cycle, and the mechanical property and the radiation resistance of a connector can be remarkably improved.
一种使用氧化钙/氧化铝/二氧化硅/氧化锂玻璃焊料连接SiC陶瓷材料的方法,涉及一种使用玻璃焊料连接SiC陶瓷材料的方法。本发明是要解决目前核反应堆服役条件下SiC陶瓷的连接需要高温高压条件,接头性能以及抗辐照性能差的技术问题。本发明有利于提高接头的力学性能,同时能提高SiC陶瓷焊接结构件在核辐照服役环境下的可靠性,使得该焊接结构有望利用在核电领域。本发明的玻璃焊料连接方法具有使用简单,可以在无压、气氛和相对更低的连接温度1200℃~1280℃下实现连接,在焊接热循环中,焊料能原位形成一个结晶率高的玻璃陶瓷焊缝,能显著提高接头的力学性能和抗辐照性能。
Method for connecting SiC ceramic material by using calcium oxide/aluminum oxide/silicon dioxide/lithium oxide glass solder
一种使用氧化钙/氧化铝/二氧化硅/氧化锂玻璃焊料连接SiC陶瓷材料的方法
ZHANG JIE (Autor:in) / FANG JIAN (Autor:in) / LIU CHUNFENG (Autor:in) / SUN LIANGBO (Autor:in) / GUO SONGSONG (Autor:in) / SHAN TIPENG (Autor:in) / WEN YUE (Autor:in)
28.05.2021
Patent
Elektronische Ressource
Chinesisch
Method for connecting silicon carbide ceramics through calcium oxide/aluminum oxide-based solder
Europäisches Patentamt | 2022
|Method for connecting aluminum oxide ceramic and aluminum through composite glass solder
Europäisches Patentamt | 2024
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2021
|Europäisches Patentamt | 2019
|