Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Barium titanate-based dielectric material for X8R-type multilayer ceramic capacitor and preparation method of barium titanate-based dielectric material
The invention discloses a barium titanate-based dielectric material for an X8R-type multilayer ceramic capacitor and a preparation method of the barium titanate-based dielectric material. The chemical formula of the material is BaTiO3-xBi2O3-yMgO-zY2O3, 0.5 mol% of Nd2O3, and 0.5 wt% of B. The preparation method of the material comprises the following steps of: preparing the boron-zinc sintering aid B; putting raw materials into a ball mill, mixing and ball-milling the raw materials by using a wet ball-milling method, drying the mixture to obtain ceramic powder, carrying out grinding, granulating and sieving, and carrying out dry-pressing molding to obtain a ceramic green body; and discharging glue and performing sintering so as to obtain barium titanate-based dielectric material. The high-dielectric-constant dielectric material for the X8R type MLCC is simple in preparation process, low in cost and high in dielectric constant; the room-temperature dielectric constant of the high-dielectric-constant dielectric material for the X8R type MLCC is 2884, the room-temperature loss of the material is smaller than or equal to 2%, the absolute value of the capacitance-temperature change rate of the material relative to the room-temperature dielectric constant is smaller than or equal to 15% within the temperature range of -55 DEG C to 150 DEG C, and the material has a bright application prospect.
本发明公开了一种钛酸钡基X8R型多层陶瓷电容器用介质材料及制备方法。该材料化学式为BaTiO3‑xBi2O3‑yMgO‑zY2O3+0.5mol%Nd2O3+0.5wt%B。其制备方法为:先制备硼锌助烧剂B;然后将原料放入球磨机中用湿式球磨法混合球磨,并经烘干得到陶瓷粉体、研磨、造粒、过筛,干压成型得到陶瓷生坯;排胶后在烧结即得到。本发明的高介电常数X8R型MLCC介质材料制备工艺简单、成本低廉、介电常数高,其室温介电常数为2884,室温损耗≤2%,在‑55℃‑150℃温度范围内,相对室温介电常数的容温变化率的绝对值|△C/C25℃|≤15%,具有良好的应用前景。
Barium titanate-based dielectric material for X8R-type multilayer ceramic capacitor and preparation method of barium titanate-based dielectric material
The invention discloses a barium titanate-based dielectric material for an X8R-type multilayer ceramic capacitor and a preparation method of the barium titanate-based dielectric material. The chemical formula of the material is BaTiO3-xBi2O3-yMgO-zY2O3, 0.5 mol% of Nd2O3, and 0.5 wt% of B. The preparation method of the material comprises the following steps of: preparing the boron-zinc sintering aid B; putting raw materials into a ball mill, mixing and ball-milling the raw materials by using a wet ball-milling method, drying the mixture to obtain ceramic powder, carrying out grinding, granulating and sieving, and carrying out dry-pressing molding to obtain a ceramic green body; and discharging glue and performing sintering so as to obtain barium titanate-based dielectric material. The high-dielectric-constant dielectric material for the X8R type MLCC is simple in preparation process, low in cost and high in dielectric constant; the room-temperature dielectric constant of the high-dielectric-constant dielectric material for the X8R type MLCC is 2884, the room-temperature loss of the material is smaller than or equal to 2%, the absolute value of the capacitance-temperature change rate of the material relative to the room-temperature dielectric constant is smaller than or equal to 15% within the temperature range of -55 DEG C to 150 DEG C, and the material has a bright application prospect.
本发明公开了一种钛酸钡基X8R型多层陶瓷电容器用介质材料及制备方法。该材料化学式为BaTiO3‑xBi2O3‑yMgO‑zY2O3+0.5mol%Nd2O3+0.5wt%B。其制备方法为:先制备硼锌助烧剂B;然后将原料放入球磨机中用湿式球磨法混合球磨,并经烘干得到陶瓷粉体、研磨、造粒、过筛,干压成型得到陶瓷生坯;排胶后在烧结即得到。本发明的高介电常数X8R型MLCC介质材料制备工艺简单、成本低廉、介电常数高,其室温介电常数为2884,室温损耗≤2%,在‑55℃‑150℃温度范围内,相对室温介电常数的容温变化率的绝对值|△C/C25℃|≤15%,具有良好的应用前景。
Barium titanate-based dielectric material for X8R-type multilayer ceramic capacitor and preparation method of barium titanate-based dielectric material
一种钛酸钡基X8R型多层陶瓷电容器用介质材料及制备方法
CHEN ZHIWU (Autor:in) / LIU RUIZHAO (Autor:in) / LU ZHENYA (Autor:in) / WANG XIN (Autor:in)
31.12.2021
Patent
Elektronische Ressource
Chinesisch
Europäisches Patentamt | 2016
|Europäisches Patentamt | 2021
|Europäisches Patentamt | 2021
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2022
|