A platform for research: civil engineering, architecture and urbanism
Crack development through plastic shrinkage in fresh concretes and mortars
The rate of water evaporation in the exposed surfaces plays an important part in the development of cracks in fresh concretes and mortars before hardening is completed. This rate of evaporation depends on the drying power of the wind sweeping such surfaces as a function of the relative humidity, temperature and speed of the air. After many studies and research work on the subject of plastic cracking, the following axiom has been established: "Plastic shrinkage and cracking of concrete surfaces take place when water evaporates from the surface quicker than it can be replaced through exudation". Once the value of weather parameters are known, the extent of the risk of crack development can be known and preventive steps taken to overcome such risk. Obviously, such steps are all oriented to reducing or stopping evaporation and go from covering surfaces with wet sackcloth or plastic foil, through sprinkling water mists or lowering the concrete temperature, to using film-forming curing products. Another additional measure can be the addition of polypropelene fibers to the concrete while in the mixer, at the rate of 0.9 kg fiber to 1 m3 of concrete.
Crack development through plastic shrinkage in fresh concretes and mortars
The rate of water evaporation in the exposed surfaces plays an important part in the development of cracks in fresh concretes and mortars before hardening is completed. This rate of evaporation depends on the drying power of the wind sweeping such surfaces as a function of the relative humidity, temperature and speed of the air. After many studies and research work on the subject of plastic cracking, the following axiom has been established: "Plastic shrinkage and cracking of concrete surfaces take place when water evaporates from the surface quicker than it can be replaced through exudation". Once the value of weather parameters are known, the extent of the risk of crack development can be known and preventive steps taken to overcome such risk. Obviously, such steps are all oriented to reducing or stopping evaporation and go from covering surfaces with wet sackcloth or plastic foil, through sprinkling water mists or lowering the concrete temperature, to using film-forming curing products. Another additional measure can be the addition of polypropelene fibers to the concrete while in the mixer, at the rate of 0.9 kg fiber to 1 m3 of concrete.
Crack development through plastic shrinkage in fresh concretes and mortars
M. Aguanell García (author)
1989
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Early shrinkage of cement pastes, mortars, and concretes
Springer Verlag | 1980
|Correlation between rheology of superplasticized fresh mortars and fresh concretes
Tema Archive | 2009
|Trans Tech Publications | 2014
|Co-ordinated approach to shrinkage testing of concretes and mortars
Engineering Index Backfile | 1962
|British Library Conference Proceedings | 2014
|